ZHANG Liyun, LI Li, ZHANG Haidong, et al. Effects of maize straw and its biochar composite substrates on the architecture of maize roots[J]. Journal of South China Agricultural University, 2024, 45(2): 207-217. DOI: 10.7671/j.issn.1001-411X.202209012
    Citation: ZHANG Liyun, LI Li, ZHANG Haidong, et al. Effects of maize straw and its biochar composite substrates on the architecture of maize roots[J]. Journal of South China Agricultural University, 2024, 45(2): 207-217. DOI: 10.7671/j.issn.1001-411X.202209012

    Effects of maize straw and its biochar composite substrates on the architecture of maize roots

    More Information
    • Received Date: September 10, 2022
    • Available Online: November 22, 2023
    • Published Date: June 13, 2023
    • Objective 

      To study the value of maize straw and its biochar for substrate improvement in facility cultivation, and explore the response of root architecture of maize to different compound substrates.

      Method 

      A pot experiment was carried out, the physicochemical properties of different ratios of substrates and the biomass of aboveground and roots of maize were measured and analyzed. The morphological, fractal and topological structure parameters of maize roots were analyzed and calculated by WinRHIZO (Pro.2020a) root analysis system. SPSS software was used to analyze the correlation of the aboveground/root biomass, root morphological parameters and architectural characteristics.

      Result 

      Among the treatments with addition of straw and its biochar, the physicochemical properties of T3 treatment (the addition volumes of vermiculite, perlite, maize straw and maize straw biochar were 22.4, 22.4, 22.4 and 44.8 dm3 respectively) were the most optimized compared to CK, with total porosity and water-holding porosity reaching 81.02% and 55.38% respectively, and the contents of available N, P, and K were all at the optimal level. In T3 treatment, the biomass of the root system, as well as the three main morphological parameters of root length, root surface area, and root volume, were significantly different from other treatments, which were 112.82%, 79.89%, 101.21%, and 102.53% higher than CK, respectively. With the increase of straw and its biochar addition ratio, the root fractal dimension of each treatment gradually increased, from 1.425 in CK to 1.514 in T3, and the topological index gradually decreased, from 0.699 in CK to 0.628 in T3, the topological index of T3 was closer to 0.5. The maize root biomass and main morphological parameters had very significantly positive correlations with fractal dimension and fractal abundance, and very significantly negative correlations with topological index.

      Conclusion 

      The addition of straw and its biochar can effectively improve the physical and chemical properties of the substrate and provide a high-quality growth environment for the root system. The environment has a high plasticity for root architecture, the change of the physicochemical properties of the matrix can make the maize root architecture tend to change in a direction that is more conducive to nutrient and water utilization. The root architecture traits can characterize the morphological characteristics of the root system to a certain extent, and can also be used as an index to verify the cultivation effect of the composite substrates.

    • [1]
      宋洁, 李志洪, 赵小军, 等. 秸秆还田对土壤微团聚体特征的影响[J]. 水土保持学报, 2018, 32(5): 116-120. doi: 10.13870/j.cnki.stbcxb.2018.05.019
      [2]
      范如芹, 罗佳, 严少华, 等. 农作物秸秆基质化利用技术研究进展[J]. 生态与农村环境学报, 2016, 32(3): 410-416. doi: 10.11934/j.issn.1673-4831.2016.03.012
      [3]
      朱丽, 陈晓东, 乔玉山, 等. 不同配比基质对草莓母苗生长和抽生匍匐茎的影响[J]. 江西农业大学学报, 2021, 43(3): 547-554. doi: 10.13836/j.jjau.2021061
      [4]
      张新宇. 不同复配基质对草莓植株生长的果实品质的影响[D]. 合肥: 安徽农业大学, 2021.
      [5]
      张海晶, 王少杰, 田春杰, 等. 玉米秸秆及其生物炭对东北黑土溶解有机质特性的影响[J]. 水土保持学报, 2021, 35(2): 243-250. doi: 10.13870/j.cnki.stbcxb.2021.02.032
      [6]
      KAVITHA B, REDDY P V L, KIM B, et al. Benefits and limitations of biochar amendment in agricultural soils: A review[J]. Journal of Environmental Management, 2018, 227: 146-154.
      [7]
      陈庆飞, 石岩, 刘玉学, 等. 生物炭替代泥炭栽培基质对铁皮石斛生长的影响[J]. 中国农学通报, 2015, 31(13): 30-35. doi: 10.11924/j.issn.1000-6850.casb14120043
      [8]
      文中华, 刘喜雨, 孟军, 等. 生物炭和腐熟秸秆组配基质对水稻幼苗生长的影响[J]. 沈阳农业大学学报, 2020, 51(1): 10-17.
      [9]
      孙守如, 杨秋生, 董晓宇, 等. 玉米秸有机栽培基质矿质营养及理化性质分析[J]. 农业工程学报, 2008, 24(6): 41-44. doi: 10.3321/j.issn:1002-6819.2008.06.008
      [10]
      刘超杰, 郭世荣, 束胜, 等. 醋糟基质粉碎程度对辣椒幼苗生长和光合能力的影响[J]. 农业工程学报, 2010, 26(1): 330-334. doi: 10.3969/j.issn.1002-6819.2010.01.059
      [11]
      刘振国. 玉米秸秆不同配比基质对黄瓜生长发育的影响[D]. 郑州: 河南农业大学, 2009.
      [12]
      刘梅, 吴广俊, 路笃旭, 等. 不同年代玉米品种氮素利用效率与其根系特征的关系[J]. 植物营养与肥料学报, 2017, 23(1): 71-82. doi: 10.11674/zwyf.16158
      [13]
      MCCORMACK M L, GUO D L, IVERSEN C M, et al. Building a better foundation: Improving root-trait measurements to understand and model plant and ecosystem processes[J]. The New Phytologist, 2017, 215(1): 27-37. doi: 10.1111/nph.14459
      [14]
      MALAMY J E. Intrinsic and environmental response pathways that regulate root system architecture[J]. Plant Cell and Environment, 2005, 28(1): 67-77. doi: 10.1111/j.1365-3040.2005.01306.x
      [15]
      单立山, 李毅, 任伟, 等. 河西走廊中部两种荒漠植物根系构型特征[J]. 应用生态学报, 2013, 24(1): 25-31. doi: 10.13287/j.1001-9332.2013.0152
      [16]
      FITTER A H. The topology and geometry of plant root systems: Influence of watering rate on root system topology in Trifolium pratense[J]. Annals of Botany, 1986, 58(1): 91-101. doi: 10.1093/oxfordjournals.aob.a087191
      [17]
      LYNCH J. Root architecture and plant productivity[J]. Plant Physiology, 1995, 109(1): 7-13. doi: 10.1104/pp.109.1.7
      [18]
      杨培岭, 罗远培. 冬小麦根系形态的分形特征[J]. 科学通报, 1994, 39(20): 1911-1913. doi: 10.3321/j.issn:0023-074X.1994.20.026
      [19]
      DANNOWSKI M, BLOCK A. Fractal geometry and root system structures of heterogeneous plant communities[J]. Plant and Soil, 2005, 272(1/2): 61-76.
      [20]
      GUO S, LIU Z J, ZHOU Z J, et al. Root system architecture differences of maize cultivars affect yield and nitrogen accumulation in Southwest China[J]. Agriculture, 2022, 12(2): 209. doi: 10.3390/agriculture12020209.
      [21]
      漆栋良, 胡田田, 吴雪, 等. 灌水方式对玉米根系生长及产量和水分利用的影响[J]. 西北农业学报, 2014, 23(8): 73-78. doi: 10.7606/j.issn.1004-1389.2014.08.012
      [22]
      郭世荣. 无土栽培学[M]. 北京: 中国农业出版社, 2011.
      [23]
      鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
      [24]
      汪飞, 罗学刚, 赵健, 等. 松针和椰糠无土栽培基质理化性质比较研究[J]. 中国农学通报, 2016, 32(22): 164-169. doi: 10.11924/j.issn.1000-6850.casb16040143
      [25]
      刘佳, 项文化, 徐晓, 等. 湖南会同5个亚热带树种的细根构型及功能特征分析[J]. 植物生态学报, 2010, 34(8): 938-945. doi: 10.3773/j.issn.1005-264x.2010.08.006
      [26]
      李金航, 周玫, 朱济友, 等. 黄栌幼苗根系构型对土壤养分胁迫环境的适应性研究[J]. 北京林业大学学报, 2020, 42(3): 65-77. doi: 10.12171/j.1000-1522.20190218
      [27]
      任杰, 赵成章, 赵夏纬, 等. 金塔绿洲荒漠交错带沙蓬根系分形特征[J]. 生态学报, 2020, 40(15): 5298-5305.
      [28]
      KETIPEARACHCHI K W, TATSUMI J. Local fractal dimensions and multifractal analysis of the root system of legumes[J]. Plant Production Science, 2000, 3(3): 289-295. doi: 10.1626/pps.3.289
      [29]
      马雄忠, 王新平. 阿拉善高原2种荒漠植物根系构型及生态适应性特征[J]. 生态学报, 2020, 40(17): 6001-6008.
      [30]
      BEIDLER K V, TAYLOR B N, STRAND A E, et al. Changes in root architecture under elevated concentrations of CO2 and nitrogen reflect alternate soil exploration strategies[J]. The New Phytologist, 2015, 205(3): 1153-1163. doi: 10.1111/nph.13123
      [31]
      王宇欣, 孙倩倩, 王平智, 等. 玉米秸秆复配基质对黄瓜幼苗生长发育的影响[J]. 农业机械学报, 2018, 49(7): 286-295. doi: 10.6041/j.issn.1000-1298.2018.07.034
      [32]
      连兆煌. 无土栽培原理与技术[M]. 北京: 中国农业出版社, 1994: 58-59.
      [33]
      PRESTERL T, SEITZ G, LANDBECK M, et al. Improving nitrogen-use efficiency in European maize: Estimation of quantitative genetic parameters[J]. Crop Science, 2003, 43(4): 1259-1265. doi: 10.2135/cropsci2003.1259
      [34]
      张硕, 余宏军, 蒋卫杰. 发酵玉米芯或甘蔗渣基质的黄瓜育苗效果[J]. 农业工程学报, 2015, 31(11): 236-242. doi: 10.11975/j.issn.1002-6819.2015.11.034
      [35]
      程效义, 孟军, 黄玉威, 等. 生物炭对玉米根系生长和氮素吸收及产量的影响[J]. 沈阳农业大学学报, 2016, 47(2): 218-223.
      [36]
      范龙, 吴啸鹏, 黄敏, 等. 生物炭施用对水稻育秧土理化特性和秧苗素质的影响[J]. 华南农业大学学报, 2018, 39(1): 40-44. doi: 10.7671/j.issn.1001-411X.2018.01.007
      [37]
      蒋健, 王宏伟, 刘国玲, 等. 生物炭对玉米根系特性及产量的影响[J]. 玉米科学, 2015, 23(4): 62-66. doi: 10.13597/j.cnki.maize.science.20150412
      [38]
      杨小林, 张希明, 李义玲, 等. 基于分形理论的塔克拉玛干沙漠腹地自然植物根系构型特征分析[J]. 干旱区资源与环境, 2015, 29(8): 145-150. doi: 10.13448/j.cnki.jalre.2015.272
      [39]
      杨小林, 张希明, 李义玲, 等. 塔克拉玛干沙漠腹地几种植物根系分形特征[J]. 干旱区地理, 2009, 32(2): 249-254.
      [40]
      闫励, 杨方社, 李怀恩, 等. 砒砂岩区不同立地下沙棘根系分形特征[J]. 干旱区研究, 2019, 36(2): 467-473. doi: 10.13866/j.azr.2019.02.24
      [41]
      BERNTSON G M. Topological scaling and plant root system architecture: Developmental and functional hierarchies[J]. The New Phytologist, 1997, 135(4): 621-634. doi: 10.1046/j.1469-8137.1997.00687.x
      [42]
      吕爽, 张现慧, 张楠, 等. 胡杨幼苗根系生长与构型对土壤水分的响应[J]. 西北植物学报, 2015, 35(5): 1005-1012. doi: 10.7606/j.issn.1000-4025.2015.05.1005
      [43]
      张立芸, 段青松, 李永梅. 坡耕地山原红壤大豆根系构型及根土复合体力学特性[J]. 中国生态农业学报(中英文), 2022, 30(9): 1464-1476. doi: 10.12357/cjea.20220003
    • Related Articles

      [1]LIU Guohai, WAN Yalian, SHEN Yue, LIU Hui, HE Siwei, ZHANG Yafei. Complete coverage path planning of irregular convex field for the high clearance unmanned sprayer based on improved particle swarm optimizer algorithm[J]. Journal of South China Agricultural University, 2025, 46(3): 390-398. DOI: 10.7671/j.issn.1001-411X.202409017
      [2]XIE Jinyan, LIU Lixing, YANG Xin, WANG Xiaosa, WANG Xu, LIU Shuteng. A path optimization algorithm for cooperative operation of multiple unmanned mowers in apple orchard[J]. Journal of South China Agricultural University, 2024, 45(4): 578-587. DOI: 10.7671/j.issn.1001-411X.202309010
      [3]ZHANG Yali, MO Zhenjie, TIAN Haoxin, LAN Yubin, WANG Linlin. Path planning algorithm of agricultural robot based on improved APF-FMT*[J]. Journal of South China Agricultural University, 2024, 45(3): 408-415. DOI: 10.7671/j.issn.1001-411X.202305030
      [4]YANG Chen, CHEN Jiyang, HU Qingsong, ZHANG Zheng, NIU Fengjie. Path planning of unmanned vehicle based on multi-objective PSO-ACO fusion algorithm[J]. Journal of South China Agricultural University, 2023, 44(1): 65-73. DOI: 10.7671/j.issn.1001-411X.202205005
      [5]WANG Wei, ZHANG Yanfei, GONG Jinliang, LAN Yubin. Whole area coverage strategy of agricultural robot based on adaptive heating simulated annealing algorithm[J]. Journal of South China Agricultural University, 2021, 42(6): 126-132. DOI: 10.7671/j.issn.1001-411X.202104022
      [6]WANG Wei, ZHANG Yanfei, GONG Jinliang. Study on the whole area coverage of agricultural robot in complex environment based on ant colony-BFS algorithm[J]. Journal of South China Agricultural University, 2021, 42(3): 119-125. DOI: 10.7671/j.issn.1001-411X.202009027
      [7]XIE Zhonghong, WANG Pei, GU Baoxing, JI Changying, TIAN Guangzhao. Application of genetic algorithm based on group and elite strategy for robot navigation[J]. Journal of South China Agricultural University, 2017, 38(5): 110-116. DOI: 10.7671/j.issn.1001-411X.2017.05.019
      [8]WANG Liu-yi,FU Yin-lian,JIN Ling-ling. Studies on Algorithms to Detect and Segment Licence Plate Figure[J]. Journal of South China Agricultural University, 2006, 27(3): 100-102. DOI: 10.7671/j.issn.1001-411X.2006.03.028
      [9]ZHENG Guo-qing,ZHANG Guo-quan. Parameter Estimations of Semi-Parametric Linear Regression Models Using Simulated Annealing Algorithm[J]. Journal of South China Agricultural University, 2006, 27(2): 115-117. DOI: 10.7671/j.issn.1001-411X.2006.02.030
      [10]LI Bo. A Distributed Routing Algorithm Based on Delay-Limiting[J]. Journal of South China Agricultural University, 2003, 24(4): 96-99. DOI: 10.7671/j.issn.1001-411X.2003.04.026
    • Cited by

      Periodical cited type(17)

      1. 蒋沅均,刘红光,余立扬,廖新炜,余劼,陈宇佳,刘畅,秦文祥,郑炜超. 蛋鸡养殖智能巡检机器人设计概述与应用. 中国家禽. 2025(02): 89-97 .
      2. 熊竹青,陈怡然,刘莹,孙雷,刘玉龙,闫银发,田野,冯泽猛,印遇龙. 畜禽养殖场舍电磁环境研究进展. 家畜生态学报. 2025(01): 98-107 .
      3. 王晨晓,耿丹丹,毕瑜林,陈国宏,常国斌,白皓. 肠道微生物及其代谢产物对家禽饲料利用率影响的研究进展. 中国家禽. 2025(05): 152-160 .
      4. 徐君鹏,时磊,王宇,杨文强,杨秋亚. 基于PLC的生猪养殖智能化环境监控及云平台系统设计. 河南科技学院学报(自然科学版). 2025(03): 44-53 .
      5. 王祎娜,王鹏军,陈聪. 肉鸡福利养殖的发展现状与趋势. 智能化农业装备学报(中英文). 2025(02): 105-110 .
      6. 韩雨晓,李帅,王宁,安娅军,张漫,李寒. 基于3D激光雷达的鸡舍通道中心线检测方法. 农业工程学报. 2024(09): 173-181 .
      7. 邵润霖,白宇航,刘睿衡,张京,董梦玥,肖德琴,谢青梅,张新珩. 家禽疫病智能化检测技术研究进展. 中国家禽. 2024(07): 93-100 .
      8. 肖德琴,黄一桂,熊悦淞,刘俊彬,谭祖杰,吕斯婷. 畜禽机器人技术研究进展与未来展望. 华南农业大学学报. 2024(05): 624-634+620 . 本站查看
      9. 刘晓燕. 亚氨基二乙酸型螯合树脂柱-电感耦合等离子体质谱法测定家禽养殖废水中7种金属元素的残留量. 理化检验-化学分册. 2024(07): 744-748 .
      10. 余志安,肖瑞全,李秋生,汤晋,陈恒,谢宁,刘小春. 江西省家禽产业数字化现实基础、制约因素及推进路径. 中国禽业导刊. 2024(08): 19-25 .
      11. 孙杰,马凯欣,王佳乐,胡应宽. 禽舍智慧管家——基于数字农业的家禽养殖应用. 当代畜牧. 2024(06): 1-3 .
      12. 宁小芬,陆美连,莫梅清,方燕,李梦玲,刘皓,王开胜. 我国智慧养殖关键技术、平台及其应用的研究进展. 玉林师范学院学报. 2024(03): 95-100 .
      13. 肖德琴,曾瑞麟,周敏,黄一桂,王文策. 基于DH-YoloX的群养马岗鹅关键行为监测. 农业工程学报. 2023(02): 142-149 .
      14. 冷婷婷. 家禽养殖设备专利分析. 现代畜牧科技. 2023(07): 132-135 .
      15. 胡建平,赵新宇,冯汝广,范国华,赵翠敏. 传感器在设施农业中的应用. 南方农机. 2023(19): 59-61+91 .
      16. 杨雨彤,句金,任守华. 基于深度卷积神经网络的蛋鸡体温监测系统. 现代畜牧科技. 2023(10): 51-55 .
      17. 冉明霞,郑基坛,刘兴廷,谢龙,左二伟,陆阳清. 家禽基因编辑相关技术研究进展及应用. 中国畜禽种业. 2023(12): 36-48 .

      Other cited types(16)

    Catalog

      Article views PDF downloads Cited by(33)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return