Citation: | HUANG Wei, LI Jing, ZHUANG Yi, et al. Research advances in circadian clock of plant in response to biotic stress[J]. Journal of South China Agricultural University, 2022, 43(6): 121-129. DOI: 10.7671/j.issn.1001-411X.202209008 |
The circadian clock is an endogenous and self-sustaining timing mechanism that evolved to track daily rhythms and allow plants to prepare for predictable and recurring environmental changes, ultimately enhancing fitness and adaptation. The circadian clock plays a vital role in plant growth and development as well as pest and pathogen resistance. Pathogen and pest have different attacking capacity at different time. The circadian clock enables plants to anticipate the time of pathogen and pest attacks and promote the defence responses at the most effective time of the day. The circadian gating responses can increase resistance without substantial energy consumption. On the other hand, the changes in the level of phytohormones, reactive oxygen species (ROS) and ion homeostasis caused by biotic stresses are involved in clock resetting. Studying the correlation between circadian clock and immunity will increase plant pathogen resistance and reduce pesticides usage which would have a great agronomic impact on future crop breeding. Here we review the recent research on the interaction between the circadian clock and plant immunity, and highlight new avenues for future research.
[1] |
ZHANG E E, KAY S A. Clocks not winding down: Unravelling circadian networks[J]. Nature Reviews Molecular Cell Biology, 2010, 11(11): 764-776. doi: 10.1038/nrm2995
|
[2] |
LU S X, WEBB C J, KNOWLES S M, et al. CCA1 and ELF3 interact in the control of hypocotyl length and flowering time in Arabidopsis[J]. Plant Physiology, 2012, 158(2): 1079-1088. doi: 10.1104/pp.111.189670
|
[3] |
徐小冬, 谢启光. 植物生物钟研究的历史回顾与最新进展[J]. 自然杂志, 2013, 35(2): 118-126.
|
[4] |
DE LEONE M J, HERNANDO C E, MORA-GARCíA S, et al. It’s a matter of time: The role of transcriptional regulation in the circadian clock-pathogen crosstalk in plants[J]. Transcription, 2020, 11(3/4): 1-17.
|
[5] |
KARASOV T L, CHAE E, HERMAN J J, et al. Mechanisms to mitigate the trade-off between growth and defense[J]. The Plant Cell, 2017, 29(4): 666-680. doi: 10.1105/tpc.16.00931
|
[6] |
MELDAU S, ERB M, BALDWIN I T. Defence on demand: Mechanisms behind optimal defence patterns[J]. Annals of botany, 2012, 110(8): 1503-1514. doi: 10.1093/aob/mcs212
|
[7] |
HUOT B, YAO J, MONTGOMERY B L, et al. Growth-defense tradeoffs in plants: A balancing act to optimize fitness[J]. Molecular Plant, 2014, 7(8): 1267-1287. doi: 10.1093/mp/ssu049
|
[8] |
NAGEL D H, KAY S A. Complexity in the wiring and regulation of plant circadian networks[J]. Current Biology, 2012, 22(16): R648-R657. doi: 10.1016/j.cub.2012.07.025
|
[9] |
MICHAEL T P, SALOMÉ P A, YU H J, et al. Enhanced fitness conferred by naturally occurring variation in the circadian clock[J]. Science, 2003, 302(5647): 1049-1053. doi: 10.1126/science.1082971
|
[10] |
GREENHAM K, MCCLUNG C R. Integrating circadian dynamics with physiological processes in plants[J]. Nature Reviews Genetics, 2015, 16(10): 598-610. doi: 10.1038/nrg3976
|
[11] |
KOHSAKA A, BASS J. Clock genes and metabolic regulation[M]// SQUIRE L R. Encyclopedia of Neuroscience. Amsterdam: Elsevier, 2009: 1023-1029.
|
[12] |
MCCLUNG C R. Plant circadian rhythms[J]. The Plant Cell, 2006, 18(4): 792-803. doi: 10.1105/tpc.106.040980
|
[13] |
HSU P Y, HARMER S L. Wheels within wheels: The plant circadian system[J]. Trends in Plant Science, 2014, 19(4): 240-249. doi: 10.1016/j.tplants.2013.11.007
|
[14] |
WENDEN B, KOZMA-BOGNÁR L, EDWARDS K D. Light inputs shape the Arabidopsis circadian system[J]. The Plant Journal, 2011, 66(3): 480-491. doi: 10.1111/j.1365-313X.2011.04505.x
|
[15] |
KI Y, RI H, LEE H, et al. Warming up your tick-tock: Temperature-dependent regulation of circadian clocks[J]. The Neuroscientist:A Review Journal Bringing Neurobiology, Neurology And Psychiatry, 2015, 21(5): 503-518.
|
[16] |
MWIMBA M, KARAPETYAN S, LIU L, et al. Daily humidity oscillation regulates the circadian clock to influence plant physiology[J]. Nature Communications, 2018, 9(1): 4290. doi: 10.1038/s41467-018-06692-2.
|
[17] |
MICHAEL T P, MOCKLER T C, BRETON G, et al. Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules[J]. PLoS Genetics, 2008, 4(2): e14. doi: 10.1371/journal.pgen.0040014.
|
[18] |
SHALIT-KANEH A, KUMIMOTO R W, FILKOV V, et al. Multiple feedback loops of the Arabidopsis circadian clock provide rhythmic robustness across environmental conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(27): 7147-7152. doi: 10.1073/pnas.1805524115
|
[19] |
BELL-PEDERSEN D, CASSONE V M, EARNEST D J, et al. Circadian rhythms from multiple oscillators: Lessons from diverse organisms[J]. Nature Reviews Genetics, 2005, 6(7): 544-556. doi: 10.1038/nrg1633
|
[20] |
CREUX N, HARMER S. Circadian rhythms in plants[J]. Cold Spring Harbor Perspectives in Biology, 2019, 11(9): a034611. doi: 10.1101/cshperspect.a034611.
|
[21] |
DIXON L E, KNOX K, KOZMA-BOGNAR L, et al. Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis[J]. Current Biology, 2011, 21(2): 120-125. doi: 10.1016/j.cub.2010.12.013
|
[22] |
FARRÉ E M, LIU T. The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks[J]. Current Opinion in Plant Biology, 2013, 16(5): 621-629. doi: 10.1016/j.pbi.2013.06.015
|
[23] |
WANG Z Y, TOBIN E M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression[J]. Cell, 1998, 93(7): 1207-1217. doi: 10.1016/S0092-8674(00)81464-6
|
[24] |
EZER D, JUNG J H, LAN H, et al. The evening complex coordinates environmental and endogenous signals in Arabidopsis[J]. Nature Plants, 2017, 3: 17087. doi: 10.1038/nplants.2017.87.
|
[25] |
DE LEONE M J, HERNANDO C E, ROMANOWSKI A, et al. The LNK gene family: At the crossroad between light signaling and the circadian clock[J]. Genes, 2018, 10(1): 2. doi: 10.3390/genes10010002.
|
[26] |
ALABADÍ D, OYAMA T, YANOVSKY M J, et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock[J]. Science, 2001, 293(5531): 880-883. doi: 10.1126/science.1061320
|
[27] |
MALAPEIRA J, KHAITOVA L C, MAS P. Ordered changes in histone modifications at the core of the Arabidopsis circadian clock[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(52): 21540-21545. doi: 10.1073/pnas.1217022110
|
[28] |
STAIGER D, GREEN R. RNA-based regulation in the plant circadian clock[J]. Trends in Plant Science, 2011, 16(10): 517-523. doi: 10.1016/j.tplants.2011.06.002
|
[29] |
FILICHKIN S A, MOCKLER T C. Unproductive alternative splicing and nonsense mRNAs: A widespread phenomenon among plant circadian clock genes[J]. Biology Direct, 2012, 7: 20. doi: 10.1186/1745-6150-7-20.
|
[30] |
BENDIX C, MARSHALL C M, HARMON F G. Circadian clock genes universally control key agricultural traits[J]. Molecular Plant, 2015, 8(8): 1135-1152. doi: 10.1016/j.molp.2015.03.003
|
[31] |
DANGL J L, HORVATH D M, STASKAWICZ B J. Pivoting the plant immune system from dissection to deployment[J]. Science, 2013, 341(6147): 746-751. doi: 10.1126/science.1236011
|
[32] |
NANDETY R S, CAPLAN J L, CAVANAUGH K, et al. The role of TIR-NBS and TIR-X proteins in plant basal defense responses[J]. Plant Physiology, 2013, 162(3): 1459-1472. doi: 10.1104/pp.113.219162
|
[33] |
LI B, MENG X Z, SHAN L B, et al. Transcriptional regulation of pattern-triggered immunity in plants[J]. Cell Host & Microbe, 2016, 19(5): 641-650.
|
[34] |
JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329. doi: 10.1038/nature05286
|
[35] |
CUI H T, TSUDA K, PARKER J E. Effector-triggered immunity: From pathogen perception to robust defense[J]. Annual Review of Plant Biology, 2015, 66: 487-511. doi: 10.1146/annurev-arplant-050213-040012
|
[36] |
GREENBERG J T, YAO N. The role and regulation of programmed cell death in plant-pathogen interactions[J]. Cellular Microbiology, 2004, 6(3): 201-211. doi: 10.1111/j.1462-5822.2004.00361.x
|
[37] |
LU H, MCCLUNG C R, ZHANG C. Tick tock: Circadian regulation of plant innate immunity[J]. Annual Review of Phytopathology, 2017, 55: 287-311. doi: 10.1146/annurev-phyto-080516-035451
|
[38] |
INGLE R A, STOKER C, STONE W, et al. Jasmonate signalling drives time-of-day differences in susceptibility of Arabidopsis to the fungal pathogen Botrytis cinerea[J]. The Plant Journal, 2015, 84(5): 937-948. doi: 10.1111/tpj.13050
|
[39] |
HUA J. Modulation of plant immunity by light circadian rhythm and temperature[J]. Current Opinion in Plant Biology, 2013, 16(4): 406-413. doi: 10.1016/j.pbi.2013.06.017
|
[40] |
VALIM H, DALTON H, JOO Y, et al. TOC1 in Nicotiana attenuata regulates efficient allocation of nitrogen to defense metabolites under herbivory stress[J]. The New Phytologist, 2020, 228(4): 1227-1242. doi: 10.1111/nph.16784
|
[41] |
JOO Y, SCHUMAN M C, GOLDBERG J K, et al. Herbivory elicits changes in green leaf volatile production via jasmonate signaling and the circadian clock[J]. Plant, Cell & Environment, 2019, 42(3): 972-982.
|
[42] |
PÉREZ-GARCÍA P, MA Y, YANOVSKY M J, et al. Time-dependent sequestration of RVE8 by LNK proteins shapes the diurnal oscillation of anthocyanin biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(16): 5249-5253. doi: 10.1073/pnas.1420792112
|
[43] |
WANG W, BARNABY J Y, TADA Y, et al. Timing of plant immune responses by a central circadian regulator[J]. Nature, 2011, 470(7332): 110-114. doi: 10.1038/nature09766
|
[44] |
ZHANG C, XIE Q G, ANDERSON R G, et al. Crosstalk between the circadian clock and innate immunity in Arabidopsis[J]. PLoS Pathogens, 2013, 9(6): e1003370. doi: 10.1371/journal.ppat.1003370.
|
[45] |
YANG L, LIU P T, WANG X C, et al. A central circadian oscillator confers defense heterosis in hybrids without growth vigor costs[J]. Nature Communications, 2021, 12(1): 2317. doi: 10.1038/s41467-021-22268-z.
|
[46] |
NICAISE V, JOE A, JEONG B R, et al. Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7[J]. The EMBO Journal, 2013, 32(5): 701-712. doi: 10.1038/emboj.2013.15
|
[47] |
ZHANG C, GAO M, SEITZ N C, et al. LUX ARRHYTHMO mediates crosstalk between the circadian clock and defense in Arabidopsis[J]. Nature Communications, 2019, 10(1): 2543. doi: 10.1038/s41467-019-10485-6.
|
[48] |
BÜRGER M, CHORY J. Stressed out about hormones: How plants orchestrate immunity[J]. Cell Host & Microbe, 2019, 26(2): 163-172.
|
[49] |
ZHOU M, WANG W, KARAPETYAN S, et al. Redox rhythm reinforces the circadian clock to gate immune response[J]. Nature, 2015, 523(7561): 472-476. doi: 10.1038/nature14449
|
[50] |
CAMPOS M L, KANG J H, HOWE G A. Jasmonate-triggered plant immunity[J]. Journal of Chemical Ecology, 2014, 40(7): 657-675. doi: 10.1007/s10886-014-0468-3
|
[51] |
ROBERT-SEILANIANTZ A, GRANT M, JONES J D G. Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism[J]. Annual Review of Phytopathology, 2011, 49: 317-343. doi: 10.1146/annurev-phyto-073009-114447
|
[52] |
CHINI A, FONSECA S, FERNÁNDEZ G, et al. The JAZ family of repressors is the missing link in jasmonate signalling[J]. Nature, 2007, 448(7154): 666-671. doi: 10.1038/nature06006
|
[53] |
THINES B, KATSIR L, MELOTTO M, et al. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling[J]. Nature, 2007, 448(7154): 661-665. doi: 10.1038/nature05960
|
[54] |
LI R, LLORCA L C, SCHUMAN M C, et al. ZEITLUPE in the roots of wild tobacco regulates jasmonate-mediated nicotine biosynthesis and resistance to a generalist herbivore[J]. Plant Physiology, 2018, 177(2): 833-846. doi: 10.1104/pp.18.00315
|
[55] |
HEVIA M A, CANESSA P, MÜLLER-ESPARZA H, et al. A circadian oscillator in the fungus Botrytis cinerea regulates virulence when infecting Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(28): 8744-8749. doi: 10.1073/pnas.1508432112
|
[56] |
WINDRAM O, MADHOU P, MCHATTIE S, et al. Arabidopsis defense against Botrytis cinerea: Chronology and regulation deciphered by high-resolution temporal transcriptomic analysis[J]. The Plant Cell, 2012, 24(9): 3530-3557. doi: 10.1105/tpc.112.102046
|
[57] |
GAPPER C, DOLAN L. Control of plant development by reactive oxygen species[J]. Plant Physiology, 2006, 141(2): 341-345. doi: 10.1104/pp.106.079079
|
[58] |
SPOEL S H, VAN OOIJEN G. Circadian redox signaling in plant immunity and abiotic stress[J]. Antioxidants & Redox Signaling, 2014, 20(18): 3024-3039.
|
[59] |
HARMER S L, HOGENESCH J B, STRAUME M, et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock[J]. Science, 2000, 290(5499): 2110-2113. doi: 10.1126/science.290.5499.2110
|
[60] |
LAI A G, DOHERTY C J, MUELLER-ROEBER B, et al. CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(42): 17129-17134. doi: 10.1073/pnas.1209148109
|
[61] |
KUREPA J, SMALLE J, VAN MONTAGU M, et al. Oxidative stress tolerance and longevity in Arabidopsis: The late-flowering mutant gigantea is tolerant to paraquat[J]. The Plant Journal, 1998, 14(6): 759-764. doi: 10.1046/j.1365-313x.1998.00168.x
|
[62] |
ALMAGRO L, GÓMEZ ROS L V, BELCHI-NAVARRO S, et al. Class III peroxidases in plant defence reactions[J]. Journal of Experimental Botany, 2009, 60(2): 377-390. doi: 10.1093/jxb/ern277
|
[63] |
TORRES M A, DANGL J L, JONES J D G. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(1): 517-522. doi: 10.1073/pnas.012452499
|
[64] |
TORRES M A, JONES J D G, DANGL J L. Pathogen-induced NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana[J]. Nature Genetics, 2005, 37(10): 1130-1134. doi: 10.1038/ng1639
|