• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
BAI Mei, WU Hong. Research progress in secretory cavity morphogenesis in Citrus[J]. Journal of South China Agricultural University, 2022, 43(6): 130-135. DOI: 10.7671/j.issn.1001-411X.202208060
Citation: BAI Mei, WU Hong. Research progress in secretory cavity morphogenesis in Citrus[J]. Journal of South China Agricultural University, 2022, 43(6): 130-135. DOI: 10.7671/j.issn.1001-411X.202208060

Research progress in secretory cavity morphogenesis in Citrus

More Information
  • Received Date: August 25, 2022
  • Available Online: May 17, 2023
  • The secretory cavity is a ubiquitous structure in Citrus plants, which is the main place for the synthesis and accumulation of medicinal components. Current studies have shown that the secretory cavity of citrus plants occurs in schizolysogenesis, and the development of secretory cells is a process of programmed cell death. However, the study of the development of secretory cavity has experienced a hundred years. This review focuses on the origin, development and programmed cell death of secretory cavity in Citrus, in order to provide a reference for future studies on secretory cavity morphogenesis.

  • [1]
    VAN TIEQHEM P. Deuxieme memoire sur les canaux secreteurs[J]. Annales des Sciences Naturelles Botanique, 1885: 1-96.
    [2]
    SCHULZE H, BLATTANAT B. Rutaceae[M]. Heidelberg: Diss, 1902: 50.
    [3]
    LIANG S J, WU H, LUN X, et al. Secretory cavity development and its relationship with the accumulation of essential oil in fruits of Citrus medica L. var. sarcodactylis (Noot. ) Swingle[J]. Journal of Integrative Plant Biology, 2006, 48(5): 573-583. doi: 10.1111/j.1744-7909.2006.00230.x
    [4]
    WU Z, LI H, YANG Y, et al. Variation in the components and antioxidant activity of Citrus medica L. var. sarcodactylis essential oils at different stages of maturity[J]. Industrial Crops and Products, 2013, 46: 311-316. doi: 10.1016/j.indcrop.2013.02.015
    [5]
    MARTINET J. Organes de secretion des vegetaux[J]. Annales Des Sciences Naturelles Botanique, 1872, 14(5): 91-232.
    [6]
    HABERLANDT G. Physioloqical plant anotomy[M]. London: Macmillan Press, 1914: 777.
    [7]
    FOHN M. Zurentstehunq und weiterbildlung der exkreträume von Citrus medica L. und Eucalyptus globulus Lab[J]. Ö sterreichische Botanische Zeitschrift, 1935, 84(3): 198-209.
    [8]
    KISSER J G. Die Ausscheidung von atherischen glen und harzen[J]. Handbuch der Pflanzenphysiologie, 1958, 10: 91-131.
    [9]
    AMELUNXEN F, ARBEITER H. Untersuchungen an den Spritzdrusen von Dictamnus albus L.[J]. Zeitschrift Pflanzenphysiologie, 1967, 58: 49-69.
    [10]
    HEINRICH G. Licht- und elektronenmikroskopische untersuchungen zur genese der exkrete in den lysigenen exkretrumen von Citrus medica[J]. Flora Oder Allgemeine Botanische Zeitung. Abt. A, Physiologie und Biochemie, 1966, 156(5): 451-460. doi: 10.1016/S0367-1836(17)30213-6
    [11]
    HEINRICH G. Elektronenmikroskopische beobachtungen zur entstehungsweise der exkretbehlter von Ruta graveolens, Citrus limon und Poncirus trifoliata[J]. Ö sterreichische Botanische Zeitschrift, 1969, 117(4): 397-403.
    [12]
    HEINRICH G. Elektronenmikroskopische beobachtungen an den drüsenzellen von Poncirus trifoliata; zugleich ein beitrag zur wirkung ätherischeröle auf pflanzenzellen und eine method zur unterscheidung flüchtiger von nichtflüchtigen lipophilen komponenten[J]. Protoplasma, 1970, 69(1): 15-36. doi: 10.1007/BF01276649
    [13]
    ESAU K. Plant anatomy[M]. 2nd ed. New York: Wiley, 1965.
    [14]
    ESAU K. Anatomy of seed plants[M]. 2nd ed. New York: Wiley, 1977.
    [15]
    BOSABALIDIS A, TSEKOS I. Ultrastructural studies on the secretory cavities of Citrus deliciosa ten. I. Early stages of the gland cells differentiation[J]. Protoplasma, 1982, 112: 55-62. doi: 10.1007/BF01280215
    [16]
    BOSABALIDIS A, TSEKOS I. Ultrastructural studies on the secretory cavities of Citrus deliciosa ten. Ⅱ. Early stages of the gland cells differentiation[J]. Protoplasma, 1982, 112: 63-70. doi: 10.1007/BF01280216
    [17]
    TSCHIRCH A, STOCK E. Die harze und die harzbehälter[M]. Beilin: Gebrüder Borntraeger, 1933.
    [18]
    THOMSON W W, PLATT-ALOIA K A, ENDRESS A G. Ultrastructure of oil gland development in the leaf of Citrus sinensis L[J]. Botanical Gazette, 1976, 137: 330-340. doi: 10.1086/336880
    [19]
    FAHN A. Secretory tissues in plants[M]. London: Academic Press, 1979: 176-209.
    [20]
    TURNER G W, BERRY A M, GIFFORD E M. Schizogenous secretory cavities of Citrus limon (L. ) Burm. F. and a reevaluation of the lysigenous gland concept[J]. International Journal of Plant Sciences, 1998, 159: 75-88. doi: 10.1086/297523
    [21]
    TURNER G W. A brief history of the lysigenous gland hypothesis[J]. The Botanical Review, 1999, 65(1): 76-88. doi: 10.1007/BF02856558
    [22]
    KNIGHT T G, KLIEBER A, SEDGLEY M. The relationship between oil gland and fruit development in Washington navel orange (Citrus sinensis L. Osbeck)[J]. Annals of Botany, 2001, 88(6): 1039-1047. doi: 10.1006/anbo.2001.1546
    [23]
    KNIGHT T G, KLIEBER A, SEDGLEY M. Structural basis of the rind disorder oleocellosis in Washington navel orange (Citrus sinensis L. Osbeck)[J]. Annals of Botany, 2002, 90(6): 765-773. doi: 10.1093/aob/mcf258
    [24]
    BROCHERIOU J, BELIN-DEPOUX M. Contribution a I etude ontogenique des poches des feuilles de quelques Myrtaceae[J]. Phytumurphology, 1974, 24: 321-338.
    [25]
    SIECK W. Die schizolysigenen secretbehalter[J]. Jahrb Wiss Botanik, 1895, 27: 197-242.
    [26]
    BUVAT R. Ontogeny, cell differentiation and structure of vascular plants[M]. Berlin: Springer-Verlag, 1989.
    [27]
    SPRECHER E. BeitrRge zur frage der biogenese sekundirer pflanzenstoffe der weinraute (Ruta graveolens L.)[J]. Planta, 1956, 47(4): 323-358. doi: 10.1007/BF01911861
    [28]
    BENNICI A, TANI C. Anatomical and ultrastructural study of the secretory cavity development of Citrus sinensis and Citrus limon: Evaluation of schizolysigenous ontogeny[J]. Flora-Morphology, Distribution, Functional Ecology of Plants, 2004, 199(6): 464-475. doi: 10.1078/0367-2530-00174
    [29]
    CHEN Y, WU H. Programmed cell death involved in the schizolysigenous formation of the secretory cavity in Citrus sinensis L. (Osbeck)[J]. Chinese Science Bulletin, 2010, 55(20): 2160-2168. doi: 10.1007/s11434-010-3275-4
    [30]
    LIU P, LIANG S, YAO N, et al. Programmed cell death of secretory cavity cells in fruits of Citrus grandis cv. Tomentosa is associated with activation of caspase 3-like protease[J]. Trees, 2012, 26(6): 1821-1835. doi: 10.1007/s00468-012-0752-1
    [31]
    BAI M, LIANG M, HUAI B, et al. Ca2+-dependent nuclease is involved in DNA degradation during the formation of the secretory cavity by programmed cell death in fruit of Citrus grandis ‘Tomentosa’[J]. Journal of Experimental Botany, 2020, 71(16): 4812-4827. doi: 10.1093/jxb/eraa199
    [32]
    HUAI B, BAI M, TONG P P, et al. CgPBA1 may be involved in nuclear degradation during secretory cavity formation by programmed cell death in Citrus grandis ‘Tomentosa’ fruits[J]. Plant Physiology and Biochemistry, 2021, 160: 306-314. doi: 10.1016/j.plaphy.2021.01.018
    [33]
    LIANG M, BAI M, WU H. Zn2+-dependent nuclease is involved in nuclear degradation during the programmed cell death of secretory cavity formation in Citrus grandis ‘Tomentosa’ fruits[J]. Cells, 2021, 10(11): 3222. doi: 10.3390/cells10113222
    [34]
    TONG P, HUAI B, CHEN Y, et al. CisPG21 and CisCEL16 are involved in the regulation of the degradation of cell walls during secretory cavity cell programmed cell death in the fruits of Citrus sinensis (L. ) Osbeck[J]. Plant Science, 2020, 297: 110540. doi: 10.1016/j.plantsci.2020.110540
    [35]
    仝盼盼. 化橘红和甜橙果实分泌囊发育过程中细胞壁降解的细胞和分子特性研究[D]. 广州: 华南农业大学, 2020.
    [36]
    CUTTER E G. Plant anatomy: Experiment and interpretation part I: Cells and tissues[M]. London: Addison Wesley, 1978: 106-143.
    [37]
    FAHN A, RACHMILEVITZ T. Ultrastructure and nectar secretion in Lonicera japonica[J]. Botanical Journal of the Linnean Society, 1970, 63: 51-56.
    [38]
    CHATIN J. Etudes histologiques et histogeniques sur les glandes foliairesinterieures et quelques productions analogues[J]. Annales Des Sciences Naturelles. Botanique, 1875, 2(6): 199-221.
    [39]
    PETERSON R L, SCOTT M G, ELLS B E. Structure of astem-derived callus of Rutagravelens; meristems, leaves, and secretory structures[J]. Canadian Journal of Botany-Revue Cannadiennede Botanique, 1978, 56: 271-283.
    [40]
    CARR D J, CARR S G M. Oil glands and ducts in Eucalyptus L'Herit. II: Development and structure of oil glands in the embryo[J]. Australian Journal of Botany, 1970, 18(2): 191-212. doi: 10.1071/BT9700191
    [41]
    FREY-WYSSLING, A. Elimination processes in higher plants[J]. Saussurea, 1972, 3: 79-90.
    [42]
    胡正海, 余刚. 枳分泌囊的结构与发育的研究[J]. 植物学报, 1993, 35(6): 447-452.
    [43]
    LIANG S J, WANG H Y, YANG M, et al. Sequential actions of pectinases and cellulases during secretory cavity formation in Citrus fruits[J]. Trees, 2009, 23(1): 19-27. doi: 10.1007/s00468-008-0250-7
    [44]
    BOZHKOV P V, LAM E. Green death: Revealing programmed cell death in plants[J]. Cell Death & Differentiation, 2011, 18(8): 1239-1240. doi: 10.1038/cdd.2011.86
    [45]
    VAN HAUTEGEM T, WATERS AJ, GOODRICH J, et al. Only in dying, life: Programmed cell death during plant development[J]. Trends in Plant Science, 2015, 20(2): 102-113. doi: 10.1016/j.tplants.2014.10.003
    [46]
    SPERRY J S. Evolution of water transport and xylem structure[J]. International Journal of Plant Sciences, 2003, 164(S3): S115-S127. doi: 10.1086/368398
    [47]
    ESCAMEZ S, TUOMINEN H. Programmes of cell death and autolysis in tracheary elements: When a suicidal cell arranges its own corpse removal[J]. Journal of Experimental Botany, 2014, 65(5): 1313-1321. doi: 10.1093/jxb/eru057
    [48]
    YAMAUCHI T, SHIMAMURA S, NAKAZONO M, et al. Aerenchyma formation in crop species: A review[J]. Field Crops Research, 2013, 152: 8-16. doi: 10.1016/j.fcr.2012.12.008
    [49]
    GUNAWARDENA A H L A N. Programmed cell death and tissue remodelling in plants[J]. Journal of Experimental Botany, 2008, 59(3): 445-451. doi: 10.1093/jxb/erm189
    [50]
    GUNAWARDENA A H L A N, GREENWOOD J S, DENGLER N G. Programmed cell death remodels lace plant leaf shape during development[J]. Plant Cell, 2004, 16(1): 60-73. doi: 10.1105/tpc.016188
    [51]
    LORD C E N, DAUPHINEE A N, WATTS R L, et al. Unveiling interactions among mitochondria, caspase-like proteases, and the actin cytoskeleton during plant programmed cell death (PCD)[J]. PLoS One, 2013, 8(3): e57110. doi: 10.1371/journal.pone.0057110
    [52]
    PENNELL R I, LAMB C. Programmed cell death in plants[J]. The Plant Cell, 1997, 9(7): 1157-1168.
    [53]
    LOMBARDI L, CASANI S, CECCARELLI N, et al. Programmed cell death of thenucellus during Sechium edule Sw. seed development is associated with activation of caspase-like proteases[J]. Journal of Experimental Botany, 2007, 58(11): 2949-2958. doi: 10.1093/jxb/erm137
    [54]
    CARLILE G W, SMITH D H, WIEDMANN M. Caspase-3 has a nonapoptotic functionin erythroid maturation[J]. Blood, 2004, 103: 4310-4316. doi: 10.1182/blood-2003-09-3362
    [55]
    HATSUGAI N, IWASAKI S, TAMURA K, et al. A novel membrane fusion-mediated plant immunity against bacterial pathogens[J]. Genes and Development, 2009, 23(21): 2496-2506. doi: 10.1101/gad.1825209
    [56]
    ZHANG L R, XU Q, XING D, et al. Real-time detection of caspase-3-like proteases activation in vivo using fluorescence resonance energy transfer during plant programmed cell death induced by ultraviolet-C overexposure[J]. Plant Physiology, 2009, 150(4): 1773-1783. doi: 10.1104/pp.108.125625
    [57]
    CASANI S, FONTANINI D, CAPOCCHI A, et al. Investigation on cell death in themegagametophyte of Araucaria bidwillii Hook. post-germinated seeds[J]. Plant Physiology and Biochemistry, 2009, 47(7): 599-607. doi: 10.1016/j.plaphy.2009.02.012
    [58]
    HAN J J, LIN W, ODA Y, et al. The proteasome is responsible for caspase-3-like activity during xylem development[J]. The Plant Journal, 2012, 72(1): 129-141. doi: 10.1111/j.1365-313X.2012.05070.x
    [59]
    SUGIYAMA M, ITO J, AOYAGI S, et al. Endonucleases[J]. Plant Molecular Biology, 2000, 44(3): 387-397. doi: 10.1023/A:1026504911786
    [60]
    ZHENG P, BAI M, CHEN Y, et al. Programmed cell death of secretory cavity cells of Citrus fruits is associated with Ca2+ accumulation in the nucleus[J]. Trees, 2014, 28(4): 1137-1144. doi: 10.1007/s00468-014-1024-z
  • Cited by

    Periodical cited type(6)

    1. 刘雨滢,杜婷,付奕博,叶鑫煜,闫佳慧,卢玉婷. 丁酸梭菌的功能及其在水产养殖业中的应用. 饲料研究. 2025(05): 159-162 .
    2. 周秀珍,刘滔,张毅,王扬,赵敏洁,王旭堂,黄菊,冯凤琴. 混合益生菌对大口黑鲈生长性能、肉品质及肠道健康的影响. 动物营养学报. 2024(07): 4588-4609 .
    3. 常静,万建美. 丁酸梭菌调控动物肠道健康的研究进展. 饲料研究. 2024(16): 172-176 .
    4. 亓秀晔,张修,张冠军,陈静,徐龙飞. 一株丁酸梭菌冻干菌粉的获得及体内安全性评价. 家畜生态学报. 2024(10): 29-35 .
    5. 庞孟瑶. 日粮中添加丁酸梭菌对蛋鸡生产性能、血清生化指标及经济效益的影响. 饲料研究. 2023(05): 46-50 .
    6. 徐亚飞. 丁酸梭菌在水产养殖中的研究及应用进展. 水产养殖. 2023(08): 18-23 .

    Other cited types(5)

Catalog

    Article views (121) PDF downloads (355) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return