Citation: | WANG Xiaotian, WANG Wei, CHEN Jiajun, et al. Long-distance signal transduction of nitrogen and phosphorus in plants[J]. Journal of South China Agricultural University, 2022, 43(6): 78-86. DOI: 10.7671/j.issn.1001-411X.202208058 |
In response to varied nutrient availability in soil, plants exhibit high physiological and developmental plasticity to integrate and coordinate the information of nutrient sensing between shoots and roots, and systematically regulate the whole-plant nutrient response and growth and development. This signal transduction process largely relies on the transportation of signal molecules via vascular systems, so-called long-distance signaling. Although plants require numerous mineral elements from the soil, the major nutrients that limit plant productivity are nitrogen (N) and phosphorus (P). Recent studies have elucidated that various mobile signals, such as small proteins, peptides, and microRNAs, are responsible for long-distance signaling of N and P. Here, we summarize the long-distance signal molecules identified in N and P nutrition and their related signal transduction mechanisms, provide an overview of the influence of light signals on the long-distance signal of N and P, and also discuss the future research direction of long-distance signals.
[1] |
HO C H, LIN S H, HU H C, et al. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138(6): 1184-1194. doi: 10.1016/j.cell.2009.07.004
|
[2] |
DONG J, MA G, SUI L, et al. Inositol pyrophosphate InsP8 acts as an intracellular phosphate signal in Arabidopsis[J]. Molecular Plant, 2019, 12(11): 1463-1473. doi: 10.1016/j.molp.2019.08.002
|
[3] |
WILD R, GERASIMAITE R, JUNG J Y, et al. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains[J]. Science, 2016, 352(6288): 986-990. doi: 10.1126/science.aad9858
|
[4] |
ZHU J, LAU K, PUSCHMANN R, et al. Two bifunctional inositol pyrophosphate kinases/phosphatases control plant phosphate homeostasis[J]. eLife, 2019, 8: e43582. doi: 10.7554/eLife.43582
|
[5] |
DUBEAUX G, NEVEU J, ZELAZNY E, et al. Metal sensing by the IRT1 transporter-receptor orchestrates its own degradation and plant metal nutrition[J]. Molecular Cell, 2018, 69(6): 953-964. doi: 10.1016/j.molcel.2018.02.009
|
[6] |
XU G, FAN X, MILLER A J. Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology, 2012, 63(1): 153-182. doi: 10.1146/annurev-arplant-042811-105532
|
[7] |
ZHANG H, FORDE B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture[J]. Science, 1998, 279(5349): 407-409. doi: 10.1126/science.279.5349.407
|
[8] |
OLDROYD G E D, LEYSER O. A plant’s diet, surviving in a variable nutrient environment[J]. Science, 2020, 368(6486): eaba0196. doi: 10.1126/science.aba0196
|
[9] |
RUFFEL S, KROUK G, RISTOVA D, et al. Nitrogen economics of root foraging: Transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(45): 18524-18529. doi: 10.1073/pnas.1108684108
|
[10] |
OHKUBO Y, TANAKA M, TABATA R, et al. Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition[J]. Nature Plants, 2017, 3(4): 17029. doi: 10.1038/nplants.2017.29
|
[11] |
TABATA R, SUMIDA K, YOSHII T, et al. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling[J]. Science, 2014, 346(6207): 343-346. doi: 10.1126/science.1257800
|
[12] |
CHAPMAN K, IVANOVICI A, TALESKI M, et al. CEP receptor signalling controls root system architecture in Arabidopsis and Medicago[J]. New Phytologist, 2020, 226(6): 1809-1821. doi: 10.1111/nph.16483
|
[13] |
ARAYA T, MIYAMOTO M, WIBOWO J, et al. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(5): 2029-2034. doi: 10.1073/pnas.1319953111
|
[14] |
OTA R, OHKUBO Y, YAMASHITA Y, et al. Shoot-to-root mobile CEPD-like 2 integrates shoot nitrogen status to systemically regulate nitrate uptake in Arabidopsis[J]. Nature Communications, 2020, 11(1): 641. doi: 10.1038/s41467-020-14440-8
|
[15] |
ROY S, LIU W, NANDETY R S, et al. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation[J]. The Plant Cell, 2020, 32: 15-41. doi: 10.1105/tpc.19.00279
|
[16] |
GAUTRAT P, LAFFONT C, FRUGIER F. Compact Root Architecture 2 promotes root competence for nodulation through the miR2111 systemic effector[J]. Current Biology, 2020, 30(7): 1339-1345. doi: 10.1016/j.cub.2020.01.084
|
[17] |
HUAULT E, LAFFONT C, WEN J, et al. Local and systemic regulation of plant root system architecture and symbiotic nodulation by a receptor-like kinase[J]. PLoS Genetics, 2014, 10(12): e1004891. doi: 10.1371/journal.pgen.1004891
|
[18] |
MOHD-RADZMAN N A, LAFFONT C, IVANOVICI A, et al. Different pathways act downstream of the CEP peptide receptor CRA2 to regulate lateral root and nodule development[J]. Plant Physiology, 2016, 171(4): 2536-2548. doi: 10.1104/pp.16.00113
|
[19] |
GAUTRAT P, LAFFONT C, FRUGIER F, et al. Nitrogen systemic signaling: From symbiotic nodulation to root acquisition[J]. Trends in Plant Science, 2021, 26(4): 392-406. doi: 10.1016/j.tplants.2020.11.009
|
[20] |
LIN J S, LI X, LUO Z, et al. NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula[J]. Nature Plants, 2018, 4(11): 942-952. doi: 10.1038/s41477-018-0261-3
|
[21] |
NISHIDA H, TANAKA S, HANDA Y, et al. A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus[J]. Nature Communications, 2018, 9(1): 499. doi: 10.1038/s41467-018-02831-x
|
[22] |
OKAMOTO S, TABATA R, MATSUBAYASHI Y. Long-distance peptide signaling essential for nutrient homeostasis in plants[J]. Current Opinion in Plant Biology, 2016, 34: 35-40. doi: 10.1016/j.pbi.2016.07.009
|
[23] |
TSIKOU D, YAN Z, HOLT D B, et al. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA[J]. Science, 2018, 362(6411): 233-236. doi: 10.1126/science.aat6907
|
[24] |
SASAKI T, SUZAKI T, SOYANO T, et al. Shoot-derived cytokinins systemically regulate root nodulation[J]. Nature Communications, 2014, 5(1): 4983. doi: 10.1038/ncomms5983
|
[25] |
MOREAU C, GAUTRAT P, FRUGIER F. Nitrate-induced CLE35 signaling peptides inhibit nodulation through the SUNN receptor and miR2111 repression[J]. Plant Physiology, 2021, 185(3): 1216-1228. doi: 10.1093/plphys/kiaa094
|
[26] |
SAKAKIBARA H. Cytokinins: Activity, biosynthesis, and translocation[J]. Annual Review of Plant Biology, 2006, 57: 431-449. doi: 10.1146/annurev.arplant.57.032905.105231
|
[27] |
TAKEI K, SAKAKIBARA H, TANIGUCHI M, et al. Nitrogen-dependent accumulation of cytokinins in toot and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regulator[J]. Plant and Cell Physiology, 2001, 42(1): 85-93. doi: 10.1093/pcp/pce009
|
[28] |
TAKEI K, UEDA N, AOKI K, et al. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis[J]. Plant and Cell Physiology, 2004, 45(8): 1053-1062. doi: 10.1093/pcp/pch119
|
[29] |
KO D, KANG J, KIBA T, et al. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(19): 7150-7155. doi: 10.1073/pnas.1321519111
|
[30] |
ZHANG K, NOVAK O, WEI Z, et al. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins[J]. Nature Communications, 2014, 5(1): 3274. doi: 10.1038/ncomms4274
|
[31] |
GORDON S P, CHICKARMANE V S, OHNO C, et al. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(38): 16529-16534. doi: 10.1073/pnas.0908122106
|
[32] |
LANDREIN B, FORMOSA-JORDAN P, MALIVERT A, et al. Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): 1382-1387. doi: 10.1073/pnas.1718670115
|
[33] |
OSUGI A, KOJIMA M, TAKEBAYASHI Y, et al. Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots[J]. Nature Plants, 2017, 3(8): 17112. doi: 10.1038/nplants.2017.112
|
[34] |
POITOUT A, CRABOS A, PETŘíK I, et al. Responses to systemic nitrogen signaling in Arabidopsis roots involve trans-zeatin in shoots[J]. The Plant Cell, 2018, 30(6): 1243-1257. doi: 10.1105/tpc.18.00011
|
[35] |
KAMADA-NOBUSADA T, MAKITA N, KOJIMA M, et al. Nitrogen-dependent regulation of de novo cytokinin biosynthesis in rice: The role of glutamine metabolism as an additional signal[J]. Plant and Cell Physiology, 2013, 54(11): 1881-1893. doi: 10.1093/pcp/pct127
|
[36] |
LEJAY L, WIRTH J, PERVENT M, et al. Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis[J]. Plant Physiology, 2008, 146(4): 2036-2053. doi: 10.1104/pp.107.114710
|
[37] |
CHAPMAN K, TALESKI M, OGILVIE H A, et al. CEP-CEPR1 signalling inhibits the sucrose-dependent enhancement of lateral root growth[J]. Journal of Experimental Botany, 2019, 70(15): 3955-3967. doi: 10.1093/jxb/erz207
|
[38] |
DELAY C, IMIN N, DJORDJEVIC M A. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants[J]. Journal of Experimental Botany, 2013, 64(17): 5383-5394. doi: 10.1093/jxb/ert332
|
[39] |
WANG H, HAN C, WANG J G, et al. Regulatory functions of cellular energy sensor SnRK1 for nitrate signalling through NLP7 repression[J]. Nature Plants, 2021, 8(9): 1094-1107.
|
[40] |
GANGAPPA S N, BOTTO J F. The multifaceted roles of HY5 in plant growth and development[J]. Molecular Plant, 2016, 9(10): 1353-1365. doi: 10.1016/j.molp.2016.07.002
|
[41] |
XIAO Y T, CHU L, ZHANG Y M, et al. HY5: A pivotal regulator of light-dependent development in higher plants[J]. Frontiers in Plant Science, 2022, 12: 800989. doi: 10.3389/fpls.2021.800989
|
[42] |
CHEN X, YAO Q, GAO X, et al. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition[J]. Current Biology, 2016, 26(5): 640-646. doi: 10.1016/j.cub.2015.12.066
|
[43] |
CHIOU T J, LIN S I. Signaling network in sensing phosphate availability in plants[J]. Annual Review of Plant Biology, 2011, 62(1): 185-206. doi: 10.1146/annurev-arplant-042110-103849
|
[44] |
WILLIAMSON L C, RIBRIOUX S P C P, FITTER A H, et al. Phosphate availability regulates root system architecture in Arabidopsis[J]. Plant Physiology, 2001, 126(2): 875-882. doi: 10.1104/pp.126.2.875
|
[45] |
THIBAUD M C, ARRIGHI J F, BAYLE V, et al. Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis[J]. The Plant Journal, 2010, 64(5): 775-789. doi: 10.1111/j.1365-313X.2010.04375.x
|
[46] |
BUHTZ A, SPRINGER F, CHAPPELL L, et al. Identification and characterization of small RNAs from the phloem of Brassica napus[J]. The Plant Journal, 2008, 53(5): 739-749. doi: 10.1111/j.1365-313X.2007.03368.x
|
[47] |
GAI Y P, ZHAO H N, ZHAO Y N, et al. MiRNA-seq-based profiles of miRNAs in mulberry phloem sap provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease[J]. Scientific Reports, 2018, 8(1): 812. doi: 10.1038/s41598-018-19210-7
|
[48] |
LU S, SUN Y H, SHI R, et al. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis[J]. The Plant Cell, 2005, 17(8): 2186-2203. doi: 10.1105/tpc.105.033456
|
[49] |
VARKONYI-GASIC E, GOULD N, SANDANAYAKA M, et al. Characterisation of microRNAs from apple (Malus domestica ‘Royal Gala’) vascular tissue and phloem sap[J]. BMC Plant Biology, 2010, 10: 159. doi: 10.1186/1471-2229-10-159
|
[50] |
YOO B C, KRAGLER F, VARKONYI-GASIC E, et al. A systemic small RNA signaling system in plants[J]. The Plant Cell, 2004, 16(8): 1979-2000. doi: 10.1105/tpc.104.023614
|
[51] |
BARI R, PANT B D, STITT M, et al. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants[J]. Plant Physiology, 2006, 141(3): 988-999. doi: 10.1104/pp.106.079707
|
[52] |
CHIOU T J, AUNG K, LIN S I, et al. Regulation of phosphate homeostasis by microRNA in Arabidopsis[J]. The Plant Cell, 2006, 18(2): 412-421. doi: 10.1105/tpc.105.038943
|
[53] |
BUHTZ A, PIERITZ J, SPRINGER F, et al. Phloem small RNAs, nutrient stress responses, and systemic mobility[J]. BMC Plant Biology, 2010, 10: 64. doi: 10.1186/1471-2229-10-64
|
[54] |
LIN S I, CHIANG S F, LIN W Y, et al. Regulatory network of microRNA399 and PHO2 by systemic signaling[J]. Plant Physiology, 2008, 147(2): 732-746. doi: 10.1104/pp.108.116269
|
[55] |
LIU F, WANG Z, REN H, et al. OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice[J]. The Plant Journal, 2010, 62(3): 508-517. doi: 10.1111/j.1365-313X.2010.04170.x
|
[56] |
VALDÉS-LÓPEZ O, ARENAS-HUERTERO C, RAMíREZ M, et al. Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signalling in common bean roots[J]. Plant, Cell & Environment, 2008, 31(12): 1834-1843.
|
[57] |
ZHANG Z, ZHENG Y, HAM B K, et al. Vascular-mediated signalling involved in early phosphate stress response in plants[J]. Nature Plants, 2016, 2(4): 16033. doi: 10.1038/nplants.2016.33
|
[58] |
HAM B K, BRANDOM J L, XOCONOSTLE-CÁZARES B, et al. A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex[J]. The Plant Cell, 2009, 21(1): 197-215. doi: 10.1105/tpc.108.061317
|
[59] |
ZHANG Z, ZHENG Y, HAM B, et al. Plant lncRNAs are enriched in and move systemically through the phloem in response to phosphate deficiency[J]. Journal of Integrative Plant Biology, 2019, 61(4): 492-508. doi: 10.1111/jipb.12715
|
[60] |
CHIU C H, PASZKOWSKI U. Mechanisms and impact of symbiotic phosphate acquisition[J] Cold Spring Harbor Perspectives in Biology, 2019, 11(6): a034603.
|
[61] |
BEVERIDGE C A. Axillary bud outgrowth: Sending a message[J]. Current Opinion in Plant Biology, 2006, 9(1): 35-40. doi: 10.1016/j.pbi.2005.11.006
|
[62] |
AKIYAMA K, MATSUZAKI K I, HAYASHI H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi[J]. Nature, 2005, 435(7043): 824-827. doi: 10.1038/nature03608
|
[63] |
KOHLEN W, CHARNIKHOVA T, LIU Q, et al. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis[J]. Plant Physiology, 2011, 155(2): 974-987. doi: 10.1104/pp.110.164640
|
[64] |
UMEHARA M, HANADA A, MAGOME H, et al. Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice[J]. Plant and Cell Physiology, 2010, 51(7): 1118-1126. doi: 10.1093/pcp/pcq084
|
[65] |
MüLLER L M, FLOKOVA K, SCHNABEL E, et al. A CLE-SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza[J]. Nature Plants, 2019, 5(9): 933-939. doi: 10.1038/s41477-019-0501-1
|
[66] |
GE S, HE L, JIN L, et al. Light-dependent activation of HY5 promotes mycorrhizal symbiosis in tomato by systemically regulating strigolactone biosynthesis[J]. New Phytologist, 2022, 233(4): 1900-1914. doi: 10.1111/nph.17883
|
[67] |
SAKURABA Y, KANNO S, MABUCHI A, et al. A phytochrome-B-mediated regulatory mechanism of phosphorus acquisition[J]. Nature Plants, 2018, 4(12): 1089-1101. doi: 10.1038/s41477-018-0294-7
|
[68] |
NOTAGUCHI M, KUROTANI K I, SATO Y, et al. Cell-cell adhesion in plant grafting is facilitated by β-1, 4-glucanases[J]. Science, 2020, 369(6504): 698-702. doi: 10.1126/science.abc3710
|