Citation: | LI Yiming, YANG Qianying, XIE Qingjun. Regulatory mechanism of autophagy in formation of crop agronomic traits and potential application[J]. Journal of South China Agricultural University, 2022, 43(6): 107-120. DOI: 10.7671/j.issn.1001-411X.202208057 |
Autophagy is a highly conserved and important degradation pathway in eukaryotes during evolution. Damaged proteins or organelles are wrapped into autophagic vesicles with bilayer membrane structure, they are then transported to lysosomes(animals) or vacuoles(yeast and plants) for degradation, and finally the recycling of cell contents is completed. With the in-depth study of autophagy in animals and yeast, people are paying more and more attention to plant autophagy, and the related research is gradually expanding from model plants to crops. To better understand the effects of autophagy in crop yield, quality and resistance, etc, we summarized the recent advances in autophagy in crop plants, and discussed the regulatory mechanism of autophagy in the formation of important agronomic traits in depth. This paper will provide references for further improving crop agronomic traits and agricultural production efficiency.
[1] |
MIZUSHIMA N. A brief history of autophagy from cell biology to physiology and disease[J]. Nature Cell Biology, 2018, 20(5): 521-527. doi: 10.1038/s41556-018-0092-5
|
[2] |
WARBURTON D, BELLUSCI S. Normal lung development needs self-eating[J]. The Journal of Clinical Investigation, 2019, 129(7): 2658-2659. doi: 10.1172/JCI129442
|
[3] |
KLIONSKY D J. Autophagy revisited: A conversation with Christian de Duve[J]. Autophagy, 2008, 4(6): 740-743. doi: 10.4161/auto.6398
|
[4] |
TAKESHIGE K, BABA M, TSUBOI S, et al. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction[J]. The Journal of Cell Biology, 1992, 119(2): 301-311. doi: 10.1083/jcb.119.2.301
|
[5] |
KLIONSKY D J, CREGG J M, DUNN W A JR, et al. A unified nomenclature for yeast autophagy-related genes[J]. Developmental Cell, 2003, 5(4): 539-545. doi: 10.1016/S1534-5807(03)00296-X
|
[6] |
MATSUURA A, TSUKADA M, WADA Y, et al. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae[J]. Gene, 1997, 192(2): 245-250. doi: 10.1016/S0378-1119(97)00084-X
|
[7] |
FUKUDA T, EBI Y, SAIGUSA T, et al. Atg43 tethers isolation membranes to mitochondria to promote starvation-induced mitophagy in fission yeast[J]. eLife, 2020, 9: e61245. doi: 10.7554/eLife.61245
|
[8] |
杨娇, 胡荣贵. 牺牲局部、成就整体的细胞自噬: 2016年度诺贝尔生理学或医学奖成果简介[J]. 科技导报, 2016, 34(24): 39-43.
|
[9] |
陈俊慧, 谷有全, 姚利和, 等. 分子伴侣介导的自噬在阿尔茨海默病中作用的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(11): 1529-1534.
|
[10] |
REHMAN N U, ZENG P, MO Z, et al. Conserved and diversified mechanism of autophagy between plants and animals upon various stresses[J]. Antioxidants, 2021, 10(11): 1736. doi: 10.3390/antiox10111736
|
[11] |
ZHANG Z, YANG X, SONG Y, et al. Autophagy in Alzheimer’s disease pathogenesis: Therapeutic potential and future perspectives[J]. Ageing Research Reviews, 2021, 72: 101464. doi: 10.1016/j.arr.2021.101464
|
[12] |
VAN DOORN W G, PAPINI A. Ultrastructure of autophagy in plant cells: A review[J]. Autophagy, 2013, 9(12): 1922-1936. doi: 10.4161/auto.26275
|
[13] |
BASSHAM D C, LAPORTE M, MARTY F, et al. Autophagy in development and stress responses of plants[J]. Autophagy, 2006, 2(1): 2-11. doi: 10.4161/auto.2092
|
[14] |
OKU M, SAKAI Y. Three distinct types of microautophagy based on membrane dynamics and molecular machineries[J]. Bioessays, 2018, 40(6): 1800008. doi: 10.1002/bies.201800008
|
[15] |
蔡霞, 方晓艾, 田兰婷, 等. 显微镜技术在植物细胞自噬研究中的应用[J]. 电子显微学报, 2016, 35(2): 180-185. doi: 10.3969/j.issn.1000-6281.2016.02.013
|
[16] |
SIENKO K, POORMASSALEHGOO A, YAMADA K, et al. Microautophagy in plants: Consideration of its molecular mechanism[J]. Cells, 2020, 9(4): 887. doi: 10.3390/cells9040887
|
[17] |
KAUSHIK S, CUERVO A M. The coming of age of chaperone-mediated autophagy[J]. Nature Reviews Molecular Cell Biology, 2018, 19(6): 365-381. doi: 10.1038/s41580-018-0001-6
|
[18] |
BU F, YANG M, GUO X, et al. Multiple functions of ATG8 family proteins in plant autophagy[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 466. doi: 10.3389/fcell.2020.00466
|
[19] |
BOURDENX M, MARTIN-SEGURA A, SCRIVO A, et al. Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome[J]. Cell, 2021, 184(10): 2696-2714. doi: 10.1016/j.cell.2021.03.048
|
[20] |
CABALLERO B, BOURDENX M, LUENGO E, et al. Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice[J]. Nature Communications, 2021, 12(1): 2238. doi: 10.1038/s41467-021-22501-9
|
[21] |
VAN DOORN W G, WOLTERING E J. What about the role of autophagy in PCD?[J]. Trends in Plant Science, 2010, 15(7): 361-362. doi: 10.1016/j.tplants.2010.04.009
|
[22] |
SUTTANGKAKUL A, LI F, CHUNG T, et al. The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis[J]. The Plant Cell, 2011, 23(10): 3761-3779. doi: 10.1105/tpc.111.090993
|
[23] |
BAENA-GONZALEZ E, ROLLAND F, THEVELEIN J M, et al. A central integrator of transcription networks in plant stress and energy signalling[J]. Nature, 2007, 448(7156): 938-942. doi: 10.1038/nature06069
|
[24] |
HAN C, LIU Y, SHI W, et al. KIN10 promotes stomatal development through stabilization of the SPEECHLESS transcription factor[J]. Nature Communications, 2020, 11(1): 4214. doi: 10.1038/s41467-020-18048-w
|
[25] |
SOTO-BURGOS J, BASSHAM D C. SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana[J]. PLoS One, 2017, 12(8): e0182591. doi: 10.1371/journal.pone.0182591
|
[26] |
CHEN L, SU Z Z, HUANG L, et al. The AMP-activated protein kinase KIN10 is involved in the regulation of autophagy in Arabidopsis[J]. Frontiers in Plant Science, 2017, 8: 1201. doi: 10.3389/fpls.2017.01201
|
[27] |
HUANG X, ZHENG C, LIU F, et al. Genetic analyses of the Arabidopsis ATG1 kinase complex reveal both kinase-dependent and independent autophagic routes during fixed-carbon starvation[J]. The Plant Cell, 2019, 31(12): 2973-2995. doi: 10.1105/tpc.19.00066
|
[28] |
孟彦彦, 张楠, 熊延. 植物TOR激酶响应上游信号的研究进展[J]. 植物学报, 2022, 57(1): 1-11. doi: 10.11983/CBB21183
|
[29] |
ALBERT V, HALL M N. mTOR signaling in cellular and organismal energetics[J]. Current Opinion in Cell Biology, 2015, 33: 55-66. doi: 10.1016/j.ceb.2014.12.001
|
[30] |
WANG Q, HOU S. The emerging roles of ATG1/ATG13 kinase complex in plants[J]. Journal of Plant Physiology, 2022, 271: 153653. doi: 10.1016/j.jplph.2022.153653
|
[31] |
SON O, KIM S, KIM D, et al. Involvement of TOR signaling motif in the regulation of plant autophagy[J]. Biochemical and Biophysical Research Communications, 2018, 501(3): 643-647. doi: 10.1016/j.bbrc.2018.05.027
|
[32] |
KRAFT C, KIJANSKA M, KALIE E, et al. Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy[J]. The EMBO Journal, 2012, 31(18): 3691-3703. doi: 10.1038/emboj.2012.225
|
[33] |
WANG Q, QIN Q, SU M, et al. Type one protein phosphatase regulates fixed-carbon starvation-induced autophagy in Arabidopsis[J]. The Plant Cell, 2022: koac251. doi: 10.1093/plcell/koac251
|
[34] |
QI H, LI J, XIA F N, et al. Arabidopsis SINAT proteins control autophagy by mediating ubiquitylation and degradation of ATG13[J]. The Plant Cell, 2020, 32(1): 263-284. doi: 10.1105/tpc.19.00413
|
[35] |
QI H, XIA F N, XIE L J, et al. TRAF family proteins regulate autophagy dynamics by modulating AUTOPHAGY PROTEIN6 stability in Arabidopsis[J]. The Plant Cell, 2017, 29(4): 890-911. doi: 10.1105/tpc.17.00056
|
[36] |
BHATI K K, LUONG A M, BATOKO H. VPS34 complexes in plants: Untangled enough?[J]. Trends in Plant Science, 2021, 26(4): 303-305. doi: 10.1016/j.tplants.2021.02.001
|
[37] |
HURLEY J H, SCHULMAN B A. Atomistic autophagy: The structures of cellular self-digestion[J]. Cell, 2014, 157(2): 300-311. doi: 10.1016/j.cell.2014.01.070
|
[38] |
PANKIV S, ALEMU E A, BRECH A, et al. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport[J]. The Journal of Cell Biology, 2010, 188(2): 253-269. doi: 10.1083/jcb.200907015
|
[39] |
XIONG Y, CONTENTO A L, BASSHAM D C. AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana[J]. The Plant Journal, 2005, 42(4): 535-546. doi: 10.1111/j.1365-313X.2005.02397.x
|
[40] |
ZHUANG X, CHUNG K P, CUI Y, et al. ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(3): E426-E435.
|
[41] |
LAI L, YU C, WONG J, et al. Subnanometer resolution cryo-EM structure of Arabidopsis thaliana ATG9[J]. Autophagy, 2020, 16(3): 575-583. doi: 10.1080/15548627.2019.1639300
|
[42] |
王燕, 刘玉乐. 植物细胞自噬研究进展[J]. 中国细胞生物学学报, 2010, 32(5): 677-689.
|
[43] |
CHUNG T, PHILLIPS A R, VIERSTRA R D. ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A and ATG12B loci[J]. The Plant Journal, 2010, 62(3): 483-493. doi: 10.1111/j.1365-313X.2010.04166.x
|
[44] |
HANADA T, NODA N N, SATOMI Y, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy[J]. The Journal of Biological Chemistry, 2007, 282(52): 37298-37302. doi: 10.1074/jbc.C700195200
|
[45] |
ROMANOV J, WALCZAK M, IBIRICU I, et al. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation[J]. The EMBO Journal, 2012, 31(22): 4304-4317. doi: 10.1038/emboj.2012.278
|
[46] |
KIRISAKO T, ICHIMURA Y, OKADA H, et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway[J]. The Journal of Cell Biology, 2000, 151(2): 263-276. doi: 10.1083/jcb.151.2.263
|
[47] |
ZHUANG X, WANG H, LAM S K, et al. A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis[J]. The Plant Cell, 2013, 25(11): 4596-4615. doi: 10.1105/tpc.113.118307
|
[48] |
GAO C, ZHUANG X, CUI Y, et al. Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(6): 1886-1891. doi: 10.1073/pnas.1421271112
|
[49] |
SUN S, FENG L, CHUNG K P, et al. Mechanistic insights into an atypical interaction between ATG8 and SH3P2 in Arabidopsis thaliana[J]. Autophagy, 2022, 18(6): 1350-1366. doi: 10.1080/15548627.2021.1976965
|
[50] |
SURPIN M, ZHENG H, MORITA M T, et al. The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways[J]. The Plant Cell, 2003, 15(12): 2885-2899. doi: 10.1105/tpc.016121
|
[51] |
KATSIARIMPA A, KALINOWSKA K, ANZENBERGER F, et al. The deubiquitinating enzyme AMSH1 and the ESCRT-III subunit VPS2.1 are required for autophagic degradation in Arabidopsis[J]. The Plant Cell, 2013, 25(6): 2236-2252. doi: 10.1105/tpc.113.113399
|
[52] |
SVENNING S, LAMARK T, KRAUSE K, et al. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1[J]. Autophagy, 2011, 7(9): 993-1010. doi: 10.4161/auto.7.9.16389
|
[53] |
XIE Q, TZFADIA O, LEVY M, et al. hfAIM: A reliable bioinformatics approach for in silico genome-wide identification of autophagy-associated Atg8-interacting motifs in various organisms[J]. Autophagy, 2016, 12(5): 876-887. doi: 10.1080/15548627.2016.1147668
|
[54] |
BEHRENDS C, SOWA M E, GYGI S P, et al. Network organization of the human autophagy system[J]. Nature, 2010, 466(7302): 68-76. doi: 10.1038/nature09204
|
[55] |
NODA N N, OHSUMI Y, INAGAKI F. Atg8-family interacting motif crucial for selective autophagy[J]. FEBS Letters, 2010, 584(7): 1379-1385. doi: 10.1016/j.febslet.2010.01.018
|
[56] |
HOFMANN K, FALQUET L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems[J]. Trends in Biochemical Sciences, 2001, 26(6): 347-350. doi: 10.1016/S0968-0004(01)01835-7
|
[57] |
MARSHALL R S, HUA Z, MALI S, et al. ATG8-binding UIM proteins define a new class of autophagy adaptors and receptors[J]. Cell, 2019, 177(3): 766-781. doi: 10.1016/j.cell.2019.02.009
|
[58] |
FLOYD B E, MORRISS S C, MACINTOSH G C, et al. What to eat: Evidence for selective autophagy in plants[J]. Journal of Integrative Plant Biology, 2012, 54(11): 907-920.
|
[59] |
曹嘉健, 周杰. 植物自噬的功能及其农业应用展望[J/OL]. [2022-08-25] 中国科学: 生命科学, 2022: 1-18. https://kns.cnki.net/kcms/detail/11.5840.Q.20220629.1007.002.html
|
[60] |
杨小龙, 李漾漾, 刘玉凤, 等. 植物细胞选择性自噬研究进展[J]. 园艺学报, 2017, 44(10): 2015-2028.
|
[61] |
LIU W, LIU Z, MO Z, et al. ATG8-interacting motif: Evolution and function in selective autophagy of targeting biological processes[J]. Frontiers in Plant Science, 2021, 12: 783881. doi: 10.3389/fpls.2021.783881
|
[62] |
WADA S, HAYASHIDA Y, IZUMI M, et al. Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice[J]. Plant Physiology, 2015, 168(1): 60-73. doi: 10.1104/pp.15.00242
|
[63] |
LI F Q, CHUNG T, PENNINGTON J G, et al. Autophagic recycling plays a central role in maize nitrogen remobilization[J]. The Plant Cell, 2015, 27(5): 1389-1408. doi: 10.1105/tpc.15.00158
|
[64] |
CAO J J, ZHENG X L, XIE D L, et al. Autophagic pathway contributes to low-nitrogen tolerance by optimizing nitrogen uptake and utilization in tomato[J]. Horticulture Research, 2022, 9: uhac068. doi: 10.1093/hr/uhac068
|
[65] |
SUN X, JIA X, HUO L, et al. MdATG18a overexpression improves tolerance to nitrogen deficiency and regulates anthocyanin accumulation through increased autophagy in transgenic apple[J]. Plant Cell and Environment, 2018, 41(2): 469-480. doi: 10.1111/pce.13110
|
[66] |
MAGHIAOUI A, GOJON A, BACH L. NRT1.1-centered nitrate signaling in plants[J]. Journal of Experimental Botany, 2020, 71(20): 6226-6237. doi: 10.1093/jxb/eraa361
|
[67] |
WANG H, HAN C, WANG J G, et al. Regulatory functions of cellular energy sensor SnRK1 for nitrate signalling through NLP7 repression[J]. Nature Plants, 2021, 8(9): 1094-1107.
|
[68] |
程建峰, 戴廷波, 曹卫星, 等. 不同氮收获指数水稻基因型的氮代谢特征[J]. 作物学报, 2007, 33(3): 497-502. doi: 10.3321/j.issn:0496-3490.2007.03.022
|
[69] |
李微微. 谷子自噬相关基因SiATG8a调控植物低氮胁迫响应的功能分析[D]. 哈尔滨: 哈尔滨师范大学, 2017.
|
[70] |
王丹, 王宁宁. 大豆自噬关键基因GmATG8c在氮高效、高产转基因新品种培育中的应用研究[J]. 大豆科技, 2019(5): 44-47. doi: 10.3969/j.issn.1674-3547.2019.05.011
|
[71] |
HASHIMI S M, WU N N, RAN J, et al. Silencing autophagy-related gene 2 (ATG2) results in accelerated senescence and enhanced immunity in soybean[J]. International Journal of Molecular Sciences, 2021, 22(21): 11749. doi: 10.3390/ijms222111749
|
[72] |
WANG H, SCHIPPERS J. The role and regulation of autophagy and the proteasome during aging and senescence in plants[J]. Genes, 2019, 10(4): 267. doi: 10.3390/genes10040267
|
[73] |
MAIR A, PEDROTTI L, WURZINGER B, et al. SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants[J]. eLife, 2015, 4: e05828. doi: 10.7554/eLife.05828
|
[74] |
KLEINOW T, HIMBERT S, KRENZ B, et al. NAC domain transcription factor ATAF1 interacts with SNF1-related kinases and silencing of its subfamily causes severe developmental defects in Arabidopsis[J]. Plant Science, 2009, 177(4): 360-370. doi: 10.1016/j.plantsci.2009.06.011
|
[75] |
LOZANO-DURAN R, MACHO A P, BOUTROT F, et al. The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth[J]. eLife, 2013, 2 e00983.
|
[76] |
ZHANG Z Z, ZHU J Y, ROH J, et al. TOR signaling promotes accumulation of BZR1 to balance growth with carbon availability in Arabidopsis[J]. Current Biology, 2016, 26(14): 1854-1860. doi: 10.1016/j.cub.2016.05.005
|
[77] |
CHIBA A, ISHIDA H, NISHIZAWA N K, et al. Exclusion of ribulose-1, 5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat[J]. Plant and Cell Physiology, 2003, 44(9): 914-921. doi: 10.1093/pcp/pcg118
|
[78] |
ISHIDA H, YOSHIMOTO K, IZUMI M, et al. Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process[J]. Plant Physiology, 2008, 148(1): 142-155. doi: 10.1104/pp.108.122770
|
[79] |
MICHAELI S, HONIG A, LEVANONY H, et al. Arabidopsis ATG8-interacting protein 1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole[J]. The Plant Cell, 2014, 26(10): 4084-4101. doi: 10.1105/tpc.114.129999
|
[80] |
OTEGUI M S. Vacuolar degradation of chloroplast components: Autophagy and beyond[J]. Journal of Experimental Botany, 2018, 69(4): 741-750. doi: 10.1093/jxb/erx234
|
[81] |
XIE Q J, MICHAELI S, PELED-ZEHAVI H, et al. Chloroplast degradation: One organelle, multiple degradation pathways[J]. Trends in Plant Science, 2015, 20(5): 264-265. doi: 10.1016/j.tplants.2015.03.013
|
[82] |
HTWE N, YUASA T, ISHIBASHI Y, et al. Leaf senescence of soybean at reproductive stage is associated with induction of autophagy-related genes, GmATG8c, GmATG8i and GmATG4[J]. Plant Production Science, 2011, 14(2): 141-147. doi: 10.1626/pps.14.141
|
[83] |
ZENG Z X, WANG C M, ZHAO Y T, et al. Molecular characterization of leaf senescence-associated autophagy genes in postharvest Chinese flowering cabbage and identifying their transcriptional activator BrMYB108[J]. Postharvest Biology and Technology, 2022, 185: 111785. doi: 10.1016/j.postharvbio.2021.111785
|
[84] |
RIGAULT M, CITERNE S, MASCLAUX-DAUBRESSE C, et al. Salicylic acid is a key player of Arabidopsis autophagy mutant susceptibility to the necrotrophic bacterium Dickeya dadantii[J]. Scientific Reports, 2021, 11(1): 3624. doi: 10.1038/s41598-021-83067-6
|
[85] |
FENG X, LIU L, LI Z, et al. Potential interaction between autophagy and auxin during maize leaf senescence[J]. Journal of Experimental Botany, 2021, 72(10): 3554-3568. doi: 10.1093/jxb/erab094
|
[86] |
蒯本科. 植物衰老关乎器官发育和作物产量与品质性状的形成[J]. 植物生理学报, 2014, 50(9): 1265-1266. doi: 10.13592/j.cnki.ppj.2014.1026
|
[87] |
MININA E A, MOSCHOU P N, VETUKURI R R, et al. Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness[J]. Journal of Experimental Botany, 2018, 69(6): 1415-1432. doi: 10.1093/jxb/ery010
|
[88] |
王凌志. 水稻产量构成因子及抽穗期QTL定位[D]. 贵阳: 贵州大学, 2021.
|
[89] |
HAYAMA R, YOKOI S, TAMAKI S, et al. Adaptation of photoperiodic control pathways produces short-day flowering in rice[J]. Nature, 2003, 422(6933): 719-722. doi: 10.1038/nature01549
|
[90] |
DOI K, IZAWA T, FUSE T, et al. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1[J]. Genes and Development, 2004, 18(8): 926-936. doi: 10.1101/gad.1189604
|
[91] |
SHIM J S, JANG G. Environmental signal-dependent regulation of flowering time in rice[J]. International Journal of Molecular Sciences, 2020, 21(17): E6155. doi: 10.3390/ijms21176155
|
[92] |
ZHOU S, ZHU S, CUI S, et al. Transcriptional and post-transcriptional regulation of heading date in rice[J]. The New Phytologist, 2021, 230(3): 943-956. doi: 10.1111/nph.17158
|
[93] |
WU W, ZHENG X M, LU G, et al. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8): 2775-2780. doi: 10.1073/pnas.1213962110
|
[94] |
张硕. RID1招募组蛋白修饰因子调控水稻成花转换的分子机理研究[D]. 武汉: 华中农业大学, 2021.
|
[95] |
王婧莹, 赵广欣, 邱冠凯, 等. 水稻抽穗期途径基因的磷酸化、泛素化研究进展[J]. 中国水稻科学, 2022, 36(3): 215-226.
|
[96] |
YANO M, KATAYOSE Y, ASHIKARI M, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS[J]. The Plant Cell, 2000, 12(12): 2473-2484. doi: 10.1105/tpc.12.12.2473
|
[97] |
HU Z, YANG Z, ZHANG Y, et al. Autophagy targets Hd1 for vacuolar degradation to regulate rice flowering[J]. Molecular Plant, 2022, 15(7): 1137-1156. doi: 10.1016/j.molp.2022.05.006
|
[98] |
宋露, 唐佳琦, 田晓杰, 等. UDT1/TDR基因过表达对水稻育性的影响[J]. 土壤与作物, 2022, 11(2): 150-158. doi: 10.11689/j.issn.2095-2961.2022.02.004
|
[99] |
KURUSU T, KOYANO T, HANAMATA S, et al. OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development[J]. Autophagy, 2014, 10(5): 878-888. doi: 10.4161/auto.28279
|
[100] |
FUJIKI Y, YOSHIMOTO K, OHSUMI Y. An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination[J]. Plant Physiology, 2007, 143(3): 1132-1139. doi: 10.1104/pp.106.093864
|
[101] |
QIN G, MA Z, ZHANG L, et al. Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development[J]. Cell Research, 2007, 17(3): 249-263. doi: 10.1038/cr.2007.7
|
[102] |
LEE Y, KIM E S, CHOI Y, et al. The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development[J]. Plant Physiology, 2008, 147(4): 1886-1897. doi: 10.1104/pp.108.121590
|
[103] |
XU N, GAO X Q, ZHAO X Y, et al. Arabidopsis AtVPS15 is essential for pollen development and germination through modulating phosphatidylinositol 3-phosphate formation[J]. Plant Molecular Biology, 2011, 77(3): 251-260. doi: 10.1007/s11103-011-9806-9
|
[104] |
YAN H, ZHUANG M, XU X, et al. Autophagy and its mediated mitochondrial quality control maintain pollen tube growth and male fertility in Arabidopsis[J]. Autophagy, 2022. doi: 10.1080/15548627.2022.2095838.
|
[105] |
YU J, ZHEN X, LI X, et al. Increased autophagy of rice can increase yield and nitrogen use efficiency (NUE)[J]. Frontiers in Plant Science, 2019, 10: 584. doi: 10.3389/fpls.2019.00584
|
[106] |
ZHEN X, LI X, YU J, et al. OsATG8c-mediated increased autophagy regulates the yield and nitrogen use efficiency in rice[J]. International Journal of Molecular Sciences, 2019, 20(19): 4956. doi: 10.3390/ijms20194956
|
[107] |
王玉. 番茄生长发育和逆境响应中自噬的作用及其调控机制[D]. 杭州: 浙江大学, 2017.
|
[108] |
GOU W, LI X, GUO S, et al. Autophagy in plant: A new orchestrator in the regulation of the phytohormones homeostasis[J]. International Journal of Molecular Sciences, 2019, 20(12): 2900. doi: 10.3390/ijms20122900
|
[109] |
LI X, WU P, LU Y, et al. Synergistic interaction of phytohormones in determining leaf angle in crops[J]. International Journal of Molecular Sciences, 2020, 21(14): 5052. doi: 10.3390/ijms21145052
|
[110] |
ZHU T, ZOU L, LI Y, et al. Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in Solanum lycopersicum[J]. Plant Biotechnology Journal, 2018, 16(12): 2063-2076. doi: 10.1111/pbi.12939
|
[111] |
PU Y, LUO X, BASSHAM D C. TOR-dependent and -independent pathways regulate autophagy in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2017, 8: 1204. doi: 10.3389/fpls.2017.01204
|
[112] |
FAN T, YANG W, ZENG X, et al. A rice autophagy gene OsATG8b is involved in nitrogen remobilization and control of grain quality[J]. Frontiers in Plant Science, 2020, 11: 588. doi: 10.3389/fpls.2020.00588
|
[113] |
XIA T, XIAO D, LIU D, et al. Heterologous expression of ATG8c from soybean confers tolerance to nitrogen deficiency and increases yield in Arabidopsis[J]. PLoS One, 2012, 7(5): e37217. doi: 10.1371/journal.pone.0037217
|
[114] |
李鑫, 甄晓溪, 于金磊, 等. 过表达OsATG8a基因提高转基因拟南芥对低氮的耐受性和产量[J]. 植物生理学报, 2019, 55(1): 69-79. doi: 10.13592/j.cnki.ppj.2018.0309
|
[115] |
甄晓溪, 刘浩然, 李鑫, 等. 异源过表达OsATG8b基因提高转基因拟南芥的氮/碳胁迫耐受性和产量[J]. 植物学报, 2019, 54(1): 23-36. doi: 10.11983/CBB18064
|
[116] |
朱爱科. 水稻垩白粒率QTL qPGWC-1的遗传分析及定位[D]. 北京: 中国农业科学院, 2018.
|
[117] |
FITZGERALD M A, MCCOUCH S R, HALL R D. Not just a grain of rice: The quest for quality[J]. Trends in Plant Science, 2009, 14(3): 133-139. doi: 10.1016/j.tplants.2008.12.004
|
[118] |
NAKATA M, FUKAMATSU Y, MIYASHITA T, et al. High temperature-induced expression of rice α-amylases in developing endosperm produces chalky grains[J]. Frontiers in Plant Science, 2017, 8: 2089. doi: 10.3389/fpls.2017.02089
|
[119] |
SERA Y, HANAMATA S, SAKAMOTO S, et al. Essential roles of autophagy in metabolic regulation in endosperm development during rice seed maturation[J]. Scientific Reports, 2019, 9(1): 18544. doi: 10.1038/s41598-019-54361-1
|
[120] |
YAN F J, SUN Y J, XU H, et al. Effects of wheat straw mulch application and nitrogen management on rice root growth, dry matter accumulation and rice quality in soils of different fertility[J]. Paddy and Water Environment, 2018, 16(3): 507-518. doi: 10.1007/s10333-018-0643-1
|
[121] |
翟于菲. 辣椒CaATG8c基因抗逆功能研究与自噬相关基因的全基因组鉴定及表达分析[D]. 杨凌: 西北农林科技大学, 2016.
|
[122] |
ZHOU J, WANG J, CHENG Y, et al. NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses[J]. PLoS Genetics, 2013, 9(1): e1003196. doi: 10.1371/journal.pgen.1003196
|
[123] |
ZHOU J, WANG J, YU J Q, et al. Role and regulation of autophagy in heat stress responses of tomato plants[J]. Frontiers in Plant Science, 2014, 5: 174.
|
[124] |
贾昕. 苹果自噬相关基因MdATG5-1和MdATG5-2在干旱、高温逆境中的功能分析[D]. 杨凌: 西北农林科技大学, 2018.
|
[125] |
HUO L, SUN X, GUO Z, et al. MdATG18a overexpression improves basal thermotolerance in transgenic apple by decreasing damage to chloroplasts[J]. Horticulture Research, 2020, 7: 21. doi: 10.1038/s41438-020-0243-2
|
[126] |
王琪. 自噬基因MdATG4a在苹果响应干旱和盐胁迫中的功能分析[D]. 杨凌: 西北农林科技大学, 2021.
|
[127] |
THIRUMALAIKUMAR V P, GORKA M, SCHULZ K, et al. Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90 and ROF1[J]. Autophagy, 2021, 17(9): 2184-2199. doi: 10.1080/15548627.2020.1820778
|
[128] |
JUNG H, LEE H N, MARSHALL R S, et al. Arabidopsis cargo receptor NBR1 mediates selective autophagy of defective proteins[J]. Journal of Experimental Botany, 2020, 71(1): 73-89. doi: 10.1093/jxb/erz404
|
[129] |
ZHOU J, WANG Z, WANG X T, et al. Dicot-specific ATG8-interacting ATI3 proteins interact with conserved UBAC2 proteins and play critical roles in plant stress responses[J]. Autophagy, 2018, 14(3): 487-504. doi: 10.1080/15548627.2017.1422856
|
[130] |
NOLAN T M, BRENNAN B, YANG M R, et al. Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival[J]. Developmental Cell, 2017, 41(1): 33-46. doi: 10.1016/j.devcel.2017.03.013
|
[131] |
LI X, LIU Q W, FENG H, et al. Dehydrin MtCAS31 promotes autophagic degradation under drought stress[J]. Autophagy, 2020, 16(5): 862-877. doi: 10.1080/15548627.2019.1643656
|
[132] |
HACHEZ C, VELJANOVSKI V, REINHARDT H, et al. The Arabidopsis abiotic stress-induced tspo-related protein reduces cell-surface expression of the aquaporin pip2;7 through protein-protein interactions and autophagic degradation[J]. The Plant Cell, 2014, 26(12): 4974-4990. doi: 10.1105/tpc.114.134080
|
[133] |
林思琪, 刘沁松. 细胞自噬在植物高温及干旱胁迫响应中的作用机制[J]. 植物生理学报, 2021, 57(5): 1031-1038.
|