• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
WANG Haihong, HU Zhe. Research status and prospect on bacterial 3-oxoacyl-ACP-reductase[J]. Journal of South China Agricultural University, 2022, 43(6): 148-159. DOI: 10.7671/j.issn.1001-411X.202208055
Citation: WANG Haihong, HU Zhe. Research status and prospect on bacterial 3-oxoacyl-ACP-reductase[J]. Journal of South China Agricultural University, 2022, 43(6): 148-159. DOI: 10.7671/j.issn.1001-411X.202208055

Research status and prospect on bacterial 3-oxoacyl-ACP-reductase

More Information
  • Received Date: August 21, 2022
  • Available Online: May 17, 2023
  • 3-oxoacyl-ACP-reductase, a member of short chain dehydrogenase/reductase(SDR) super family, participates in the biothsythesis of bacterial fatty acid and derivatives by catalyzing the reduction of 3-oxoacyl-ACP to 3-hydroxyacyl-ACP. 3-oxoacyl-ACP-reductase is ubiquitously exsit in bacterial and highly conversed in amino acid sequence, however, it has diverse biological functions. In this review, we summerize the advance of structures, biological functions and inhibitors of 3-oxoacyl-ACP-reductase in recent years. This paper will provide useful references for further understanding of 3-oxoacyl-ACP-reductase and antibacterial drug design.

  • [1]
    PARSONS J B, ROCK C O. Bacterial lipids: Metabolism and membrane homeostasis[J]. Progress in Lipid Research, 2013, 52(3): 249-276. doi: 10.1016/j.plipres.2013.02.002
    [2]
    KANEDA T. Iso- and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance[J]. Microbiological Reviews, 1991, 55(2): 288-302. doi: 10.1128/mr.55.2.288-302.1991
    [3]
    CRONAN J E, THOMAS J. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways[J]. Methods in Enzymology, 2009, 459: 395-433.
    [4]
    SANJURJO P, RUIZ J I, MONTEJO M. Inborn errors of metabolism with a protein-restricted diet: Effect on polyunsaturated fatty acids[J]. Journal of Inherited Metabolic Disease, 1997, 20(6): 783-789. doi: 10.1023/A:1005367701176
    [5]
    ROCK C O, CRONAN J E. Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis[J]. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1996, 1302(1): 1-16. doi: 10.1016/0005-2760(96)00056-2
    [6]
    GOVERS-RIEMSLAG J W P, JANSSEN M P, ZWAAL R F A, et al. Effect of membrane fluidity and fatty acid composition on the prothrombin-converting activity of phospholipid vesicles[J]. Biochemistry, 1992, 31(41): 10000-10008.
    [7]
    ZHANG Y M, ROCK C O. Membrane lipid homeostasis in bacteria[J]. Nature Reviews Microbiology, 2008, 6(3): 222-233. doi: 10.1038/nrmicro1839
    [8]
    YUAN Y Q, LEEDS J A, MEREDITH T C. Pseudomonas aeruginosa directly shunts β-oxidation degradation intermediates into de novo fatty acid biosynthesis[J]. Journal of Bacteriology, 2012, 194(19): 5185-5196. doi: 10.1128/JB.00860-12
    [9]
    ZHANG L, VERES-SCHALNAT T A, SOMOGYI A, et al. Fatty acid cosubstrates provide β-oxidation precursors for rhamnolipid biosynthesis in Pseudomonas aeruginosa, as evidenced by isotope tracing and gene expression assays[J]. Applied and Environmental Microbiology, 2012, 78(24): 8611-8622. doi: 10.1128/AEM.02111-12
    [10]
    CHRISTENSEN Q H, CRONAN J E. Lipoic acid synthesis: A new family of octanoyltransferases generally annotated as lipoate protein ligases[J]. Biochemistry, 2010, 49(46): 10024-10036. doi: 10.1021/bi101215f
    [11]
    LIN S, HANSON R E, CRONAN J E. Biotin synthesis begins by hijacking the fatty acid synthetic pathway[J]. Nature Chemical Biology, 2010, 6(9): 682-688. doi: 10.1038/nchembio.420
    [12]
    WANG Q, LIU C S, XIAN M, et al. Biosynthetic pathway for poly(3-hydroxypropionate) in recombinant Escherichia coli[J]. Journal of Microbiology, 2012, 50(4): 693-697. doi: 10.1007/s12275-012-2234-y
    [13]
    YU Y, HU Z, DONG H, et al. Xanthomonas campestris FabH is required for branched-chain fatty acid and DSF-family quorum sensing signal biosynthesis[J]. Scientific Reports, 2016, 6: 32811. doi: 10.1038/srep32811
    [14]
    HAN J, LU Q H, ZHOU L G, et al. Identification of the polyhydroxyalkanoate (PHA)-specific acetoacetyl coenzyme A reductase among multiple FabG paralogs in Haloarcula hispanica and reconstruction of the PHA biosynthetic pathway in Haloferax volcanii[J]. Applied and Environmental Microbiology, 2009, 75(19): 6168-6175. doi: 10.1128/AEM.00938-09
    [15]
    CRONAN J E JR. The structure of mammalian fatty acid synthase turned back to front[J]. Chemistry & Biology, 2004, 11(12): 1601-1602.
    [16]
    AMSTUTZ C L, FRISTEDT R, SCHULTINK A, et al. An atypical short-chain dehydrogenase-reductase functions in the relaxation of photoprotective qH in Arabidopsis[J]. Nature Plants, 2020, 6(2): 154-166. doi: 10.1038/s41477-020-0591-9
    [17]
    KOO A J, FULDA M, BROWSE J, et al. Identification of a plastid acyl‐acyl carrier protein synthetase in Arabidopsis and its role in the activation and elongation of exogenous fatty acids[J]. The Plant Journal, 2005, 44(4): 620-632. doi: 10.1111/j.1365-313X.2005.02553.x
    [18]
    LEE S, JUNG Y, LEE S, et al. Correlations between FAS elongation cycle genes expression and fatty acid production for improvement of long-chain fatty acids in Escherichia coli[J]. Applied Biochemistry and Biotechnology, 2013, 169(5): 1606-1619. doi: 10.1007/s12010-012-0088-8
    [19]
    CRONAN J E JR. Phospholipid modifications in bacteria[J]. Current Opinion in Microbiology, 2002, 5(2): 202-205. doi: 10.1016/S1369-5274(02)00297-7
    [20]
    MA J C, WU Y Q, CAO D, et al. Only acyl carrier protein 1 (AcpP1) functions in Pseudomonas aeruginosa fatty acid synthesis[J]. Frontiers in Microbiology, 2017, 8: 2186.
    [21]
    ROCK C O, JACKOWSKI S. Forty years of bacterial fatty acid synthesis[J]. Biochemical and Biophysical Research Communications, 2002, 292(5): 1155-1166. doi: 10.1006/bbrc.2001.2022
    [22]
    KONDAKOVA T, KUMAR S, CRONAN J E. A novel synthesis of trans-unsaturated fatty acids by the Gram-positive commensal bacterium Enterococcus faecalis FA2-2[J]. Chemistry and Physics of Lipids, 2019, 222: 23-35. doi: 10.1016/j.chemphyslip.2019.04.010
    [23]
    HEATH R J, ROCK C O. Fatty acid biosynthesis as a target for novel antibacterials[J]. Current Opinion in Investigational Drugs, 2004, 5(2): 146-153.
    [24]
    PARSONS J B, ROCK C O. Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery?[J]. Current Opinion in Microbiology, 2011, 14(5): 544-549. doi: 10.1016/j.mib.2011.07.029
    [25]
    MOLNOS J, GARDINER R, DALE G E, et al. A continuous coupled enzyme assay for bacterial malonyl-CoA: Acyl carrier protein transacylase (FabD)[J]. Analytical Biochemistry, 2003, 319(1): 171-176. doi: 10.1016/S0003-2697(03)00327-0
    [26]
    SIX D A, YUAN Y Q, LEEDS J A, et al. Deletion of the β-acetoacetyl synthase FabY in Pseudomonas aeruginosa induces hypoacylation of lipopolysaccharide and increases antimicrobial susceptibility[J]. Antimicrobial Agents and Chemotherapy, 2014, 58(1): 153-161. doi: 10.1128/AAC.01804-13
    [27]
    余永红, 段园园, 董会娟, 等. 茄科雷尔氏菌脂酰−CoA合成酶的功能鉴定[J]. 微生物学通报, 2017, 44(2): 366-374. doi: 10.13344/j.microbiol.china.160688
    [28]
    BI H, ZHU L, JIA J, et al. Unsaturated fatty acid synthesis in the gastric pathogen Helicobacter pylori proceeds via a backtracking mechanism[J]. Cell Chemical Biology, 2016, 23(12): 1480-1489. doi: 10.1016/j.chembiol.2016.10.007
    [29]
    雷鸣, 马金成, 王海洪. 流产布氏杆菌烯脂酰ACP还原酶的鉴定[J]. 生物化学与生物物理进展, 2012, 39(5): 464-471.
    [30]
    余永红, 马建荣, 王海洪. 野油菜黄单胞菌中烯脂酰ACP还原酶的功能鉴定[J]. 生物化学与生物物理进展, 2016, 43(5): 514-522. doi: 10.16476/j.pibb.2015.0343
    [31]
    DONG H J, MA J C, CHEN Q Y, et al. A cryptic long-chain 3-ketoacyl-ACP synthase in the Pseudomonas putida F1 unsaturated fatty acid synthesis pathway[J]. The Journal of Biological Chemistry, 2021, 297(2): 100920.
    [32]
    HEATH R J, ROCK C O. Roles of the FabA and FabZ beta-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis[J]. The Journal of Biological Chemistry, 1996, 271(44): 27795-27801. doi: 10.1074/jbc.271.44.27795
    [33]
    ZHU L, CHENG J L, LUO B, et al. Functions of the Clostridium acetobutylicium FabF and FabZ proteins in unsaturated fatty acid biosynthesis[J]. BMC Microbiology, 2009, 9: 119.
    [34]
    CAMPBELL J W, CRONAN J E JR. Bacterial fatty acid biosynthesis: Targets for antibacterial drug discovery[J]. Annual Review of Microbiology, 2001, 55: 305-332. doi: 10.1146/annurev.micro.55.1.305
    [35]
    CHENG J L, MA J C, LIN J S, et al. Only one of the five Ralstonia solanacearum long-chain 3-ketoacyl-acyl carrier protein synthase homologues functions in fatty acid synthesis[J]. Applied and Environmental Microbiology, 2012, 78(5): 1563-1573. doi: 10.1128/AEM.07335-11
    [36]
    GOLDBECK O, ECK A W, SEIBOLD G M. Real time monitoring of NADPH concentrations in Corynebacterium glutamicum and Escherichia coli via the genetically encoded sensor mBFP[J]. Frontiers in Microbiology, 2018, 9: 2564.
    [37]
    KALLBERG Y, OPPERMANN U, PERSSON B. Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models[J]. The FEBS Journal, 2010, 277(10): 2375-2386. doi: 10.1111/j.1742-4658.2010.07656.x
    [38]
    ZHANG Y, CRONAN J. Transcriptional analysis of essential genes of the Escherichia coli fatty acid biosynthesis gene cluster by functional replacement with the analogous Salmonella typhimurium gene cluster[J]. Journal of Bacteriology, 1998, 180: 3295-3303.
    [39]
    PODKOVYROV S M, LARSON T J. Identification of promoter and stringent regulation of transcription of the fabH, fabD and fabG genes encoding fatty acid biosynthetic enzymes of Escherichia coli[J]. Nucleic Acids Research, 1996, 24(9): 1747-1752. doi: 10.1093/nar/24.9.1747
    [40]
    LAI C Y, CRONAN J E. Isolation and characterization of beta-ketoacyl-acyl carrier protein reductase (fabG) mutants of Escherichia coli and Salmonella enterica serovar Typhimurium[J]. Journal of Bacteriology, 2004, 186(6): 1869-1878. doi: 10.1128/JB.186.6.1869-1878.2004
    [41]
    WANG H H, CRONAN J E. Only one of the two annotated Lactococcus lactis fabG genes encodes a functional beta-ketoacyl-acyl carrier protein reductase[J]. Biochemistry, 2004, 43(37): 11782-11789. doi: 10.1021/bi0487600
    [42]
    FENG S X, MA J C, YANG J, et al. Ralstonia solanacearum fatty acid composition is determined by interaction of two 3-ketoacyl-acyl carrier protein reductases encoded on separate replicons[J]. BMC Microbiology, 2015, 15: 223.
    [43]
    MAO Y H, LI F, MA J C, et al. Sinorhizobium meliloti functionally replaces 3-oxoacyl-acyl carrier protein reductase (FabG) by overexpressing NodG during fatty acid synthesis[J]. Molecular Plant-Microbe Interactions: MPMI, 2016, 29(6): 458-467. doi: 10.1094/MPMI-07-15-0148-R
    [44]
    HU Z, DONG H J, MA J C, et al. Novel Xanthomonas campestris long-chain-specific 3-oxoacyl-acyl carrier protein reductase involved in diffusible signal factor synthesis[J]. mBio, 2018, 9(3): e00596-e00518.
    [45]
    GUO Q Q, ZHANG W B, ZHANG C, et al. Characterization of 3-oxacyl-acyl carrier protein reductase homolog genes in Pseudomonas aeruginosa PAO1[J]. Frontiers in Microbiology, 2019, 10: 1028.
    [46]
    CUKIER C D, HOPE A G, ELAMIN A A, et al. Discovery of an allosteric inhibitor binding site in 3-oxo-acyl-ACP reductase from Pseudomonas aeruginosa[J]. ACS Chemical Biology, 2013, 8(11): 2518-2527.
    [47]
    JOERNVALL H, PERSSON B, KROOK M, et al. Short-chain dehydrogenases/reductases (SDR)[J]. Biochemistry, 1995, 34(18): 6003-6013. doi: 10.1021/bi00018a001
    [48]
    PERSSON B, KALLBERG Y. Classification and nomenclature of the superfamily of short-chain dehydrogenases/reductases (SDRs)[J]. Chemico Biological Interactions, 2013, 202(1): 111-115.
    [49]
    LORD D M, BARAN A U, WOOD T K, et al. BdcA, a protein important for Escherichia coli biofilm dispersal, is a short-chain dehydrogenase/reductase that binds specifically to NADPH[J]. PLoS One, 2014, 9(9): e105751.
    [50]
    FISHER M, KROON J T, MARTINDALE W, et al. The X-ray structure of Brassica napus β-keto acyl carrier protein reductase and its implications for substrate binding and catalysis[J]. Structure, 2000, 8(4): 339-347. doi: 10.1016/S0969-2126(00)00115-5
    [51]
    BUYSSCHAERT G, VERSTRAETE K, SAVVIDES S N, et al. Structural and biochemical characterization of an atypical short-chain dehydrogenase/reductase reveals an unusual cofactor preference[J]. The FEBS Journal, 2013, 280(5): 1358-1370. doi: 10.1111/febs.12128
    [52]
    YANG J K, YOON H J, AHN H J, et al. Crystallization and preliminary X-ray crystallographic analysis of the Rv2002 gene product from Mycobacterium tuberculosis, a beta-ketoacyl carrier protein reductase homologue[J]. Acta Crystallographica Section D, Biological Crystallography, 2002, 58(Pt2): 303-305.
    [53]
    REN Q, SIERRO N, WITHOLT B, et al. FabG, an NADPH-dependent 3-ketoacyl reductase of Pseudomonas aeruginosa, provides precursors for medium-chain-length poly-3-hydroxyalkanoate biosynthesis in Escherichia coli[J]. Journal of Bacteriology, 2000, 182(10): 2978-2981. doi: 10.1128/JB.182.10.2978-2981.2000
    [54]
    PRICE A C, ZHANG Y M, ROCK C O, et al. Structure of β-ketoacyl-[acyl carrier protein] reductase from Escherichia coli: Negative cooperativity and its structural asis[J]. Biochemistry, 2001, 40(43): 12772-12781.
    [55]
    CROSS E M, ADAMS F G, WATERS J K, et al. Insights into Acinetobacter baumannii fatty acid synthesis 3-oxoacyl-ACP reductases[J]. Scientific Reports, 2021, 11(1): 1-16. doi: 10.1038/s41598-020-79139-8
    [56]
    VELLA P, RUDRARAJU R S, LUNDBäCK T, et al. A FabG inhibitor targeting an allosteric binding site inhibits several orthologs from gram-negative ESKAPE pathogens[J]. Bioorganic & Medicinal Chemistry, 2021, 30: 115898.
    [57]
    PRICE A C, ZHANG Y M, ROCK C O, et al. Cofactor-induced conformational rearrangements establish a catalytically competent active site and a proton relay conduit in FabG[J]. Structure, 2004, 12(3): 417-428. doi: 10.1016/j.str.2004.02.008
    [58]
    ZHANG Y M, WU B N, ZHENG J, et al. Key residues responsible for acyl carrier protein and beta-ketoacyl-acyl carrier protein reductase (FabG) interaction[J]. The Journal of Biological Chemistry, 2003, 278(52): 52935-52943. doi: 10.1074/jbc.M309874200
    [59]
    童文华, 张文彬, 马金成, 等. 大肠杆菌3−酮基脂酰ACP还原酶110位天冬酰胺突变后的结构与功能[J]. 中国生物化学与分子生物学报, 2012, 28(8): 713-721. doi: 10.13865/j.cnki.cjbmb.2012.08.010
    [60]
    HU Z, MA J C, CHEN Y C, et al. Escherichia coli FabG 3-ketoacyl-ACP reductase proteins lacking the assigned catalytic triad residues are active enzymes[J]. The Journal of Biological Chemistry, 2021, 296: 100365.
    [61]
    CROSS E M, ARAGÃO D, SMITH K M, et al. Structural characterization of a short-chain dehydrogenase/reductase from multi-drug resistant Acinetobacter baumannii[J]. Biochemical and Biophysical Research Communications, 2019, 518(3): 465-471. doi: 10.1016/j.bbrc.2019.08.056
    [62]
    ZHANG Y M, WHITE S W, ROCK C O. Inhibiting bacterial fatty acid synthesis[J]. Journal of Biological Chemistry, 2006, 281(26): 17541-17544. doi: 10.1074/jbc.R600004200
    [63]
    ZHENG Y M, ZHU Y S, MAO X H, et al. SDR7-6, a short-chain alcohol dehydrogenase/reductase family protein, regulates light-dependent cell death and defence responses in rice[J]. Molecular Plant Pathology, 2022, 23(1): 78-91. doi: 10.1111/mpp.13144
    [64]
    ZHANG Y M, ROCK C O. Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase[J]. Journal of Biological Chemistry, 2004, 279(30): 30994-31001. doi: 10.1074/jbc.M403697200
    [65]
    WU D, WU X D, YOU X F, et al. Inhibitory effects on bacterial growth and beta-ketoacyl-ACP reductase by different species of maple leaf extracts and tannic acid[J]. Phytotherapy Research: PTR, 2010, 24(S1): S35-S41. doi: 10.1002/ptr.2873
    [66]
    ENGEN K, ROSENSTRÖM U, AXELSSON H, et al. Identification of drug-Like inhibitors of insulin-regulated aminopeptidase through small-molecule screening[J]. Assay and Drug Development Technologies, 2016, 14(3): 180-193. doi: 10.1089/adt.2016.708
    [67]
    VARAKALA S D, RESHMA R S, SCHNELL R, et al. Lead derivatization of ethyl 6-bromo-2-((dimethylamino) methyl)-5-hydroxy-1-phenyl-1H-indole-3-carboxylate and 5-bromo-2-(thiophene-2-carboxamido) benzoic acid as FabG inhibitors targeting ESKAPE pathogens[J]. European Journal of Medicinal Chemistry, 2022, 228: 113976.
    [68]
    KRISTAN K, BRATKOVIC T, SOVA M, et al. Novel inhibitors of beta-ketoacyl-ACP reductase from Escherichia coli[J]. Chemico Biological Interactions, 2009, 178(1): 310-316.
    [69]
    BANERJEE A, SUGANTINO M, SACCHETTINI J C, et al. The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3-ketoacyl reductase that fails to confer isoniazid resistance[J]. Microbiology, 1998, 144(10): 2697-2704. doi: 10.1099/00221287-144-10-2697
    [70]
    MARRAKCHI H, DUCASSE S, LABESSE G, et al. MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II[J]. Microbiology, 2002, 148(Pt4): 951-960.
    [71]
    PARISH T, ROBERTS G, LAVAL F, et al. Functional complementation of the essential gene fabG1 of Mycobacterium tuberculosis by Mycobacterium smegmatis fabG but not Escherichia coli fabG[J]. Journal of Bacteriology, 2007, 189(10): 3721-3728. doi: 10.1128/JB.01740-06
    [72]
    DENG Y Y, WU J E, TAO F, et al. Listening to a new language: DSF-based quorum sensing in gram-negative bacteria[J]. Chemical Reviews, 2011, 111(1): 160-173. doi: 10.1021/cr100354f
    [73]
    周莲, 王杏雨, 何亚文. 植物病原黄单胞菌DSF信号依赖的群体感应机制及调控网络[J]. 中国农业科学, 2013, 46(14): 2910-2922. doi: 10.3864/j.issn.0578-1752.2013.14.007
    [74]
    YU Y H, MA J R, GUO Q Q, et al. A novel 3-oxoacyl-ACP reductase (FabG3) is involved in the xanthomonadin biosynthesis of Xanthomonas campestris pv. campestris[J]. Molecular Plant Pathology, 2019, 20(12): 1696-1709. doi: 10.1111/mpp.12871
    [75]
    SINGH R, REYNOLDS K A. Characterization of FabG and FabI of the Streptomyces coelicolor dissociated fatty acid synthase[J]. Chembiochem, 2015, 16(4): 631-640. doi: 10.1002/cbic.201402670
  • Cited by

    Periodical cited type(2)

    1. 吕永东. 基于机器深度学习的小麦条播机双变量施肥控制方法. 中国农机装备. 2025(05): 108-111 .
    2. 郑金江. 基于VOSviewer无公害栽培技术的多维分析——发展、应用与新的挑战. 绿色科技. 2024(05): 161-167 .

    Other cited types(0)

Catalog

    Article views (155) PDF downloads (324) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return