Citation: | ZHANG Yaling, WANG Xinhe, LI Gousi, et al. Research advances in novel DNA base editors[J]. Journal of South China Agricultural University, 2022, 43(6): 1-16. DOI: 10.7671/j.issn.1001-411X.202208053 |
The base editing technology is developed from the CRISPR/Cas gene editing systems, which can perform accurate base or gene editing at the DNA level. Recent years, six types of novel DNA base editors have been developed for the editing of nuclear and organellar genomes, including the cytosine base editor (CBE), the adenine base editor (ABE), the glycosylase base editor (GBE), the adenine and cytosine dual base editor (DBE), the prime editor (PE) and the mitochondrial genome editor. In this review, we summarize the principles, optimization processes and current advances of the above six DNA editors and focus on their application in crop genetic improvement. Finally, the future development of base editing technology is prospected.
[1] |
SMITH J, BIBIKOVA M, WHITBY F G, et al. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains[J]. Nucleic Acids Research, 2000, 28(17): 3361-3369. doi: 10.1093/nar/28.17.3361
|
[2] |
BIBIKOVA M, GOLIC M, GOLIC K G, et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases[J]. Genetics, 2002, 161(3): 1169-1175. doi: 10.1093/genetics/161.3.1169
|
[3] |
LLOYD A, PLAISIER C L, CARROLL D, et al. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(6): 2232-2237. doi: 10.1073/pnas.0409339102
|
[4] |
PETOLINO J F. Genome editing in plants via designed zinc finger nucleases[J]. In Vitro Cellular & Developmental Biology Plant, 2015, 51(1): 1-8.
|
[5] |
BOCH J, SCHOLZE H, SCHORNACK S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors[J]. Science, 2009, 326(5959): 1509-1512. doi: 10.1126/science.1178811
|
[6] |
MOSCOU M J, BOGDANOVE A J. A simple cipher governs DNA recognition by TAL effectors[J]. Science, 2009, 326(5959): 1501. doi: 10.1126/science.1178817
|
[7] |
LI T, HUANG S, JIANG W Z, et al. TAL nucleases (TALNs): Hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain[J]. Nucleic Acids Research, 2011, 39(1): 359-372. doi: 10.1093/nar/gkq704
|
[8] |
LEDFORD H. CRISPR, the disruptor[J]. Nature, 2015, 522(7554): 20-24. doi: 10.1038/522020a
|
[9] |
GAO C. Genome engineering for crop improvement and future agriculture[J]. Cell, 2021, 184(6): 1621-1635. doi: 10.1016/j.cell.2021.01.005
|
[10] |
HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6): 1262-1278. doi: 10.1016/j.cell.2014.05.010
|
[11] |
MA X, ZHU Q, CHEN Y, et al. CRISPR/Cas9 platforms for genome editing in plants: Developments and applications[J]. Molecular Plant, 2016, 9(7): 961-974. doi: 10.1016/j.molp.2016.04.009
|
[12] |
REES H A, LIU D R. Base editing: Precision chemistry on the genome and transcriptome of living cells[J]. Nature Reviews Genetics, 2018, 19(12): 770-788. doi: 10.1038/s41576-018-0059-1
|
[13] |
HESS G T, TYCKO J, YAO D, et al. Methods and applications of CRISPR-mediated base editing in eukaryotic genomes[J]. Molecular Cell, 2017, 68(1): 26-43. doi: 10.1016/j.molcel.2017.09.029
|
[14] |
ZHAO K, TUNG C W, EIZENGA G C, et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa[J]. Nature Communications, 2011, 2: 467. doi: 10.1038/ncomms1467
|
[15] |
LANDRUM M J, LEE J M, BENSON M, et al. ClinVar: Public archive of interpretations of clinically relevant variants[J]. Nucleic Acids Research, 2016, 44(D1): 862-868. doi: 10.1093/nar/gkv1222
|
[16] |
KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424. doi: 10.1038/nature17946
|
[17] |
KOMOR A C, ZHAO K T, PACKER M S, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C: G-to-T: A base editors with higher efficiency and product purity[J]. Science Advances, 2017, 3(8): eaao4774. doi: 10.1126/sciadv.aao4774
|
[18] |
WANG L, XUE W, YAN L, et al. Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor[J]. Cell Research, 2017, 27(10): 1289-1292. doi: 10.1038/cr.2017.111
|
[19] |
GEHRKE J M, CERVANTES O, CLEMENT M K, et al. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities[J]. Nature Biotechnology, 2018, 36(10): 977-982. doi: 10.1038/nbt.4199
|
[20] |
ZHANG X, CHEN L, ZHU B, et al. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain[J]. Nature Cell Biology, 2020, 22(6): 740-750. doi: 10.1038/s41556-020-0518-8
|
[21] |
KOBLAN L W, DOMAN J L, WILSON C, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J]. Nature Biotechnology, 2018, 36(9): 843-846. doi: 10.1038/nbt.4172
|
[22] |
ZAFRA M P, SCHATOFF E M, KATTI A, et al. Optimized base editors enable efficient editing in cells, organoids and mice[J]. Nature Biotechnology, 2018, 36(9): 888-893. doi: 10.1038/nbt.4194
|
[23] |
REES H A, KOMOR A C, YEH W, et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery[J]. Nature Communications, 2017, 8: 15790. doi: 10.1038/ncomms15790
|
[24] |
LEE J K, JEONG E, LEE J, et al. Directed evolution of CRISPR-Cas9 to increase its specificity[J]. Nature Communications, 2018, 9: 3048. doi: 10.1038/s41467-018-05477-x
|
[25] |
WANG L, XUE W, ZHANG H, et al. Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations[J]. Nature Cell Biology, 2021, 23(5): 552-563. doi: 10.1038/s41556-021-00671-4
|
[26] |
KIM Y B, KOMOR A C, LEVY J M, et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions[J]. Nature Biotechnology, 2017, 35(4): 371-376. doi: 10.1038/nbt.3803
|
[27] |
HUANG T P, ZHAO K T, MILLER S M, et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors[J]. Nature Biotechnology, 2019, 37(6): 626-631. doi: 10.1038/s41587-019-0134-y
|
[28] |
NISHIDA K, ARAZOE T, YACHIE N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science, 2016, 353(6305): aaf8729.
|
[29] |
MA Y, ZHANG J, YIN W, et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells[J]. Nature Methods, 2016, 13(12): 1029-1035. doi: 10.1038/nmeth.4027
|
[30] |
HU J H, MILLER S M, GEURTS M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699): 57-63. doi: 10.1038/nature26155
|
[31] |
NISHIMASU H, SHI X, ISHIGURO S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science, 2018, 361(6408): 1259-1262. doi: 10.1126/science.aas9129
|
[32] |
LI X, WANG Y, LIU Y, et al. Base editing with a Cpf1-cytidine deaminase fusion[J]. Nature Biotechnology, 2018, 36(4): 324-327. doi: 10.1038/nbt.4102
|
[33] |
LI J, SUN Y, DU J, et al. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system[J]. Molecular Plant, 2017, 10(3): 526-529. doi: 10.1016/j.molp.2016.12.001
|
[34] |
LU Y, ZHU J K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system[J]. Molecular Plant, 2017, 10(3): 523-525. doi: 10.1016/j.molp.2016.11.013
|
[35] |
ZENG D, LI X, HUANG J, et al. Engineered Cas9 variant tools expand targeting scope of genome and base editing in rice[J]. Plant Biotechnology Journal, 2020, 18(6): 1348-1350. doi: 10.1111/pbi.13293
|
[36] |
ZHONG Z, SRETENOVIC S, REN Q, et al. Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG[J]. Molecular Plant, 2019, 12(7): 1027-1036. doi: 10.1016/j.molp.2019.03.011
|
[37] |
WANG M, WANG Z, MAO Y, et al. Optimizing base editors for improved efficiency and expanded editing scope in rice[J]. Plant Biotechnology Journal, 2019, 17(9): 1697-1699. doi: 10.1111/pbi.13124
|
[38] |
WU Y, XU W, WANG F, et al. Increasing cytosine base editing scope and efficiency with engineered Cas9-PmCDA1 fusions and the modified sgRNA in rice[J]. Frontiers in Genetics, 2019, 10: 379.
|
[39] |
SHIMATANI Z, KASHOJIYA S, TAKAYAMA M, et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion[J]. Nature Biotechnology, 2017, 35(5): 441-443. doi: 10.1038/nbt.3833
|
[40] |
ZONG Y, SONG Q, LI C, et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A[J]. Nature Biotechnology, 2018, 36(10): 950-953. doi: 10.1038/nbt.4261
|
[41] |
WANG F, ZHANG C, XU W, et al. Developing high-efficiency base editors by combining optimized synergistic core components with new types of nuclear localization signal peptide[J]. Crop Journal, 2020, 8(3): 408-417. doi: 10.1016/j.cj.2020.01.003
|
[42] |
XU W, YANG Y, LIU Y, et al. Discriminated sgRNAs-based SurroGate system greatly enhances the screening efficiency of plant base-edited cells[J]. Molecular Plant, 2020, 13(1): 169-180. doi: 10.1016/j.molp.2019.10.007
|
[43] |
ZENG D, LIU T, TAN J, et al. PhieCBEs: Plant high-efficiency cytidine base editors with expanded target range[J]. Molecular Plant, 2020, 13(12): 1666-1669. doi: 10.1016/j.molp.2020.11.001
|
[44] |
GAUDELLI N M, KOMOR A C, REES H A, et al. Programmable base editing of A · T to G · C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471. doi: 10.1038/nature24644
|
[45] |
YANG L, ZHANG X, WANG L, et al. Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants[J]. Protein & Cell, 2018, 9(9): 814-819.
|
[46] |
CHATTERJEE P, JAKIMO N, JACOBSON J M. Minimal PAM specificity of a highly similar SpCas9 ortholog[J]. Science Advances, 2018, 4(10): u766.
|
[47] |
RICHTER M F, ZHAO K T, ETON E, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity[J]. Nature Biotechnology, 2020, 38(7): 883-891. doi: 10.1038/s41587-020-0453-z
|
[48] |
LAPINAITE A, KNOTT G J, PALUMBO C M, et al. DNA capture by a CRISPR-Cas9-guided adenine base editor[J]. Science, 2020, 369(6503): 566-571. doi: 10.1126/science.abb1390
|
[49] |
LI C, ZONG Y, WANG Y, et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion[J]. Genome Biology, 2018, 19: 59. doi: 10.1186/s13059-018-1443-z
|
[50] |
HUA K, TAO X, ZHU J. Expanding the base editing scope in rice by using Cas9 variants[J]. Plant Biotechnology Journal, 2019, 17(2): 499-504. doi: 10.1111/pbi.12993
|
[51] |
HUA K, TAO X, YUAN F, et al. Precise A · T to G · C base editing in the rice genome[J]. Molecular Plant, 2018, 11(4): 627-630.
|
[52] |
HUA K, TAO X, HAN P, et al. Genome engineering in rice using Cas9 variants that recognize NG PAM sequences[J]. Molecular Plant, 2019, 12(7): 1003-1014. doi: 10.1016/j.molp.2019.03.009
|
[53] |
HUA K, TAO X, LIANG W, et al. Simplified adenine base editors improve adenine base editing efficiency in rice[J]. Plant Biotechnology Journal, 2020, 18(3): 770-778.
|
[54] |
KANG B, YUN J, KIM S, et al. Precision genome engineering through adenine base editing in plants[J]. Nature Plants, 2018, 4(7): 427-431. doi: 10.1038/s41477-018-0178-x
|
[55] |
GE Z, ZHENG L, ZHAO Y, et al. Engineered xCas9 and SpCas9-NG variants broaden PAM recognition sites to generate mutations in Arabidopsis plants[J]. Plant Biotechnology Journal, 2019, 17(10): 1865-1867. doi: 10.1111/pbi.13148
|
[56] |
TAN J, ZENG D, ZHAO Y, et al. PhieABEs: A PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants[J]. Plant Biotechnology Journal, 2022, 20(5): 934-943. doi: 10.1111/pbi.13774
|
[57] |
YAN D, REN B, LIU L, et al. High-efficiency and multiplex adenine base editing in plants using new TadA variants[J]. Molecular Plant, 2021, 14(5): 722-731. doi: 10.1016/j.molp.2021.02.007
|
[58] |
WEI C, WANG C, JIA M, et al. Efficient generation of homozygous substitutions in rice in one generation utilizing an rABE8e base editor[J]. Journal of Integrative Plant Biology, 2021, 63(9): 1595-1599. doi: 10.1111/jipb.13089
|
[59] |
REN Q, SRETENOVIC S, LIU S, et al. PAM-less plant genome editing using a CRISPR-SpRY toolbox[J]. Nature Plants, 2021, 7(1): 25-33. doi: 10.1038/s41477-020-00827-4
|
[60] |
LI J, XU R, QIN R, et al. Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants[J]. Molecular Plant, 2021, 14(2): 352-360. doi: 10.1016/j.molp.2020.12.017
|
[61] |
KURT I C, ZHOU R, IYER S, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells[J]. Nature Biotechnology, 2021, 39(1): 41-46. doi: 10.1038/s41587-020-0609-x
|
[62] |
ZHAO D, LI J, LI S, et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nature Biotechnology, 2021, 39(1): 35-40. doi: 10.1038/s41587-020-0592-2
|
[63] |
SUN N, ZHAO D, LI S, et al. Reconstructed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency and purity[J]. Molecular Therapy, 2022, 30(7): 2452-2463.
|
[64] |
CHEN L, PARK J E, PAA P, et al. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins[J]. Nature Communications, 2021, 12(1): 1384.
|
[65] |
YUAN T, YAN N, FEI T, et al. Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods[J]. Nature Communications, 2021, 12(1): 4902.
|
[66] |
KOBLAN L W, ARBAB M, SHEN M W, et al. Efficient C · G-to-G · C base editors developed using CRISPRi screens, target-library analysis, and machine learning[J]. Nature Biotechnology, 2021, 39(11): 1414-1425. doi: 10.1038/s41587-021-00938-z
|
[67] |
CHEN S, LIU Z, LAI L, et al. Efficient C-to-G base editing with improved target compatibility using engineered deaminase-nCas9 fusions[J]. CRISPR Journal, 2022, 5(3): 389-396. doi: 10.1089/crispr.2021.0124
|
[68] |
PARK M, YUN J, KIM H U. C-to-G base editing enhances oleic acid production by generating novel alleles of FATTY ACID DESATURASE 2 in plants[J]. Frontiers in Plant Science, 2021, 12: 748529. doi: 10.3389/fpls.2021.748529
|
[69] |
SRETENOVIC S, LIU S, LI G, et al. Exploring C-to-G base editing in rice, tomato, and poplar[J]. Frontiers in Genome Editing, 2021, 3: 756766. doi: 10.3389/fgeed.2021.756766
|
[70] |
TIAN Y, SHEN R, LI Z, et al. Efficient C-to-G editing in rice using an optimized base editor[J]. Plant Biotechnology Journal, 2022, 20(7): 1238-1240. doi: 10.1111/pbi.13841
|
[71] |
ZENG D, ZHENG Z, LIU Y, et al. Exploring C-to-G and A-to-Y base editing in rice by using new vector tools[J]. International Journal of Molecular Sciences, 2022, 23(14): 7990.
|
[72] |
LI C, ZHANG R, MENG X, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nature Biotechnology, 2020, 38(7): 875-882. doi: 10.1038/s41587-019-0393-7
|
[73] |
ZHANG X, ZHU B, CHEN L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nature Biotechnology, 2020, 38(7): 856-860. doi: 10.1038/s41587-020-0527-y
|
[74] |
SAKATA R C, ISHIGURO S, MORI H, et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations[J]. Nature Biotechnology, 2020, 38(7): 865-869. doi: 10.1038/s41587-020-0509-0
|
[75] |
GRÜNEWALD J, ZHOU R, LAREAU C A, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nature Biotechnology, 2020, 38(7): 861-864. doi: 10.1038/s41587-020-0535-y
|
[76] |
XU R, KONG F, QIN R, et al. Development of an efficient plant dual cytosine and adenine editor[J]. Journal of Integrative Plant Biology, 2021, 63(9): 1600-1605. doi: 10.1111/jipb.13146
|
[77] |
XIONG X, LI Z, LIANG J, et al. A cytosine base editor toolkit with varying activity windows and target scopes for versatile gene manipulation in plants[J]. Nucleic Acids Research, 2022, 50(6): 3565-3580. doi: 10.1093/nar/gkac166
|
[78] |
LIANG Y, XIE J, ZHANG Q, et al. AGBE: A dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns[J]. Nucleic Acids Research, 2022, 50(9): 5384-5399. doi: 10.1093/nar/gkac353
|
[79] |
ANZALONE A V, RANDOLPH P B, DAVIS J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157. doi: 10.1038/s41586-019-1711-4
|
[80] |
LIN Q, ZONG Y, XUE C, et al. Prime genome editing in rice and wheat[J]. Nature Biotechnology, 2020, 38(5): 582-585. doi: 10.1038/s41587-020-0455-x
|
[81] |
LI H, LI J, CHEN J, et al. Precise modifications of both exogenous and endogenous genes in rice by prime editing[J]. Molecular Plant, 2020, 13(5): 671-674. doi: 10.1016/j.molp.2020.03.011
|
[82] |
XU W, ZHANG C, YANG Y, et al. Versatile nucleotides substitution in plant using an improved prime editing system[J]. Molecular Plant, 2020, 13(5): 675-678. doi: 10.1016/j.molp.2020.03.012
|
[83] |
TANG X, SRETENOVIC S, REN Q, et al. Plant prime editors enable precise gene editing in rice cells[J]. Molecular Plant, 2020, 13(5): 667-670. doi: 10.1016/j.molp.2020.03.010
|
[84] |
HUA K, JIANG Y, TAO X, et al. Precision genome engineering in rice using prime editing system[J]. Plant Biotechnology Journal, 2020, 18(11): 2167-2169. doi: 10.1111/pbi.13395
|
[85] |
BUTT H, RAO G S, SEDEEK K, et al. Engineering herbicide resistance via prime editing in rice[J]. Plant Biotechnology Journal, 2020, 18(12): 2370-2372. doi: 10.1111/pbi.13399
|
[86] |
LU Y, TIAN Y, SHEN R, et al. Precise genome modification in tomato using an improved prime editing system[J]. Plant Biotechnology Journal, 2021, 19(3): 415-417. doi: 10.1111/pbi.13497
|
[87] |
NELSON J W, RANDOLPH P B, SHEN S P, et al. Engineered pegRNAs improve prime editing efficiency[J]. Nature Biotechnology, 2022, 40(3): 402-410. doi: 10.1038/s41587-021-01039-7
|
[88] |
JIANG Y, CHAI Y, LU M, et al. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize[J]. Genome Biology, 2020, 21(1): 257. doi: 10.1186/s13059-020-02170-5
|
[89] |
LIN Q, JIN S, ZONG Y, et al. High-efficiency prime editing with optimized, paired pegRNAs in plants[J]. Nature Biotechnology, 2021, 39(8): 923-927. doi: 10.1038/s41587-021-00868-w
|
[90] |
JIN S, LIN Q, LUO Y, et al. Genome-wide specificity of prime editors in plants[J]. Nature Biotechnology, 2021, 39(10): 1292-1299. doi: 10.1038/s41587-021-00891-x
|
[91] |
XU W, YANG Y, YANG B, et al. A design optimized prime editor with expanded scope and capability in plants[J]. Nature Plants, 2022, 8(1): 45-52. doi: 10.1038/s41477-021-01043-4
|
[92] |
ZONG Y, LIU Y, XUE C, et al. An engineered prime editor with enhanced editing efficiency in plants[J/OL]. Nature Biotechnology, (2022-03-24)[2022-08-10]. https://doi.org/10.1038/s41587-022-01254-w.
|
[93] |
LI H, ZHU Z, LI S, et al. Multiplex precision gene editing by a surrogate prime editor in rice[J]. Molecular Plant, 2022, 15(7): 1077-1080. doi: 10.1016/j.molp.2022.05.009
|
[94] |
ZOU J, MENG X, LIU Q, et al. Improving the efficiency of prime editing with epegRNAs and high-temperature treatment in rice[J/OL]. Science China: Life Science, (2022-06-23)[2022-08-10]. https://doi.org/10.1007/s11427-022-2147-2.
|
[95] |
JIANG T, ZHANG X, WENG Z, et al. Deletion and replacement of long genomic sequences using prime editing[J]. Nature Biotechnology, 2022, 40(2): 227-234. doi: 10.1038/s41587-021-01026-y
|
[96] |
CHOI J, CHEN W, SUITER C C, et al. Precise genomic deletions using paired prime editing[J]. Nature Biotechnology, 2022, 40(2): 218-226. doi: 10.1038/s41587-021-01025-z
|
[97] |
ANZALONE A V, GAO X D, PODRACKY C J, et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing[J]. Nature Biotechnology, 2022, 40(5): 731-740. doi: 10.1038/s41587-021-01133-w
|
[98] |
WANG J, HE Z, WANG G, et al. Efficient targeted insertion of large DNA fragments without DNA donors[J]. Nature Methods, 2022, 19(3): 331-340. doi: 10.1038/s41592-022-01399-1
|
[99] |
TAO R, WANG Y, JIAO Y, et al. Bi-PE: Bi-directional priming improves CRISPR/Cas9 prime editing in mammalian cells[J]. Nucleic Acids Research, 2022, 50(11): 6423-6434. doi: 10.1093/nar/gkac506
|
[100] |
WALLACE D C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine[J]. Annual Review of Genetics, 2005, 39: 359-407. doi: 10.1146/annurev.genet.39.110304.095751
|
[101] |
VAFAI S B, MOOTHA V K. Mitochondrial disorders as windows into an ancient organelle[J]. Nature, 2012, 491(7424): 374-383. doi: 10.1038/nature11707
|
[102] |
GAMMAGE P A, RORBACH J, VINCENT A I, et al. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations[J]. EMBO Molecular Medicine, 2014, 6(4): 458-466.
|
[103] |
BACMAN S R, KAUPPILA J H K, PEREIRA C V, et al. MitoTALEN reduces mutant mtDNA load and restores tRNA Ala levels in a mouse model of heteroplasmic mtDNA mutation[J]. Nature Medicine, 2018, 24(11): 1696-1700. doi: 10.1038/s41591-018-0166-8
|
[104] |
BACMAN S R, WILLIAMS S L, PINTO M, et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs[J]. Nature Medicine, 2013, 19(9): 1111-1113. doi: 10.1038/nm.3261
|
[105] |
FORNER J, KLEINSCHMIDT D, MEYER E H, et al. Targeted introduction of heritable point mutations into the plant mitochondrial genome[J]. Nature Plants, 2022, 8(3): 245-256. doi: 10.1038/s41477-022-01108-y
|
[106] |
KAZAMA T, OKUNO M, WATARI Y, et al. Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing[J]. Nature Plants, 2019, 5(7): 722-730. doi: 10.1038/s41477-019-0459-z
|
[107] |
MOK B Y, DE MORAES M H, ZENG J, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing[J]. Nature, 2020, 583(7817): 631-637. doi: 10.1038/s41586-020-2477-4
|
[108] |
MOK B Y, KOTRYS A V, RAGURAM A, et al. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA[J]. Nature Biotechnology, 2022, 40(9): 1378-1387.
|
[109] |
CHO S, LEE S, MOK Y G, et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases[J]. Cell, 2022, 185(10): 1764-1776. doi: 10.1016/j.cell.2022.03.039
|
[110] |
KANG B, BAE S, LEE S, et al. Chloroplast and mitochondrial DNA editing in plants[J]. Nature Plants, 2021, 7(7): 899-905. doi: 10.1038/s41477-021-00943-9
|
[111] |
LI R, CHAR S N, LIU B, et al. High-efficiency plastome base editing in rice with TAL cytosine deaminase[J]. Molecular Plant, 2021, 14(9): 1412-1414. doi: 10.1016/j.molp.2021.07.007
|
[112] |
HUA K, HAN P, ZHU J. Improvement of base editors and prime editors advances precision genome engineering in plants[J]. Plant Physiology, 2022, 188(4): 1795-1810. doi: 10.1093/plphys/kiab591
|
[113] |
BHARAT S S, LI S, LI J, et al. Base editing in plants: Current status and challenges[J]. Crop Journal, 2020, 8(3): 384-395. doi: 10.1016/j.cj.2019.10.002
|
[114] |
李国斌, 艾国, 韦静, 等. 碱基编辑技术及其在作物遗传改良中的应用综述[J]. 园艺学报, 2021, 48(4): 719-732. doi: 10.16420/j.issn.0513-353x.2020-0540
|
[115] |
ZONG Y, WANG Y, LI C, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion[J]. Nature Biotechnology, 2017, 35(5): 438-440. doi: 10.1038/nbt.3811
|
[116] |
ZAFAR K, SEDEEK K E M, RAO G S, et al. Genome editing technologies for rice improvement: Progress, prospects, and safety concerns[J]. Frontiers in Genome Editing, 2020, 2: 5.
|
[117] |
LI H, QIN R Y, LIU X S, et al. CRISPR/Cas9-mediated adenine base editing in rice genome[J]. Rice Science, 2019, 26(2): 125-128. doi: 10.1016/j.rsci.2018.07.002
|
[118] |
TIAN S, JIANG L, CUI X, et al. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing[J]. Plant Cell Reports, 2018, 37(9): 1353-1356. doi: 10.1007/s00299-018-2299-0
|
[119] |
VEILLET F, PERROT L, CHAUVIN L, et al. Transgene-free genome editing in tomato and potato plants using Agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor[J]. International Journal of Molecular Sciences, 2019, 20(2): 402. doi: 10.3390/ijms20020402
|
[120] |
ZHANG R, LIU J, CHAI Z, et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing[J]. Nature Plants, 2019, 5(5): 480-485. doi: 10.1038/s41477-019-0405-0
|
[121] |
KUANG Y, LI S, REN B, et al. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms[J]. Molecular Plant, 2020, 13(4): 565-572. doi: 10.1016/j.molp.2020.01.010
|
[122] |
WU J, CHEN C, XIAN G, et al. Engineering herbicide-resistant oilseed rape by CRISPR/Cas9-mediated cytosine base-editing[J]. Plant Biotechnology Journal, 2020, 18(9): 1857-1859. doi: 10.1111/pbi.13368
|
[123] |
VEILLET F, PERROT L, GUYON-DEBAST A, et al. Expanding the CRISPR toolbox in P. patens using SpCas9-NG variant and application for gene and base editing in Solanaceae crops[J]. International Journal of Molecular Sciences, 2020, 21(3): 1024. doi: 10.3390/ijms21031024
|
[124] |
REN B, YAN F, KUANG Y, et al. Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant[J]. Molecular Plant, 2018, 11(4): 623-626. doi: 10.1016/j.molp.2018.01.005
|
[125] |
XU Y, LIN Q, LI X, et al. Fine‐tuning the amylose content of rice by precise base editing of the Wx gene[J]. Plant Biotechnology Journal, 2021, 19(1): 11-13. doi: 10.1111/pbi.13433
|
[126] |
XU R, LI J, LIU X, et al. Development of plant prime-editing systems for precise genome editing[J]. Plant Communications, 2020, 1(3): 100043. doi: 10.1016/j.xplc.2020.100043
|
[127] |
宗媛, 高彩霞. 碱基编辑系统研究进展[J]. 遗传, 2019, 41(9): 777-800. doi: 10.16288/j.yczz.19-205
|
[128] |
JIN S, ZONG Y, GAO Q, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice[J]. Science, 2019, 364(6437): 292-295. doi: 10.1126/science.aaw7166
|
[129] |
ZUO E, SUN Y, WEI W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 2019, 364(6437): 289-292. doi: 10.1126/science.aav9973
|
[130] |
GRÜNEWALD J, ZHOU R, GARCIA S P, et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors[J]. Nature, 2019, 569(7756): 433-437. doi: 10.1038/s41586-019-1161-z
|
[131] |
ZHOU C, SUN Y, YAN R, et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis[J]. Nature, 2019, 571(7764): 275-278. doi: 10.1038/s41586-019-1314-0
|
[132] |
LI S, LIU L, SUN W, et al. A large-scale genome and transcriptome sequencing analysis reveals the mutation landscapes induced by high-activity adenine base editors in plants[J]. Genome Biology, 2022, 23(1): 51. doi: 10.1186/s13059-022-02618-w
|
[133] |
ZUO E, SUN Y, YUAN T, et al. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects[J]. Nature Methods, 2020, 17(6): 600-604. doi: 10.1038/s41592-020-0832-x
|
[134] |
DOMAN J L, RAGURAM A, NEWBY G A, et al. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors[J]. Nature Biotechnology, 2020, 38(5): 620-628. doi: 10.1038/s41587-020-0414-6
|
[135] |
JIN S, FEI H, ZHU Z, et al. Rationally designed APOBEC3B cytosine base editors with improved specificity[J]. Molecular Cell, 2020, 79(5): 728-740. doi: 10.1016/j.molcel.2020.07.005
|
[136] |
LIU Y, ZHOU J, LAN T, et al. Elimination of Cas9-dependent off-targeting of adenine base editor by using TALE to separately guide deaminase to target sites[J]. Cell Discovery, 2022, 8(1): 28. doi: 10.1038/s41421-022-00384-4
|
[137] |
ZHOU J, LIU Y, WEI Y, et al. Eliminating predictable DNA off-target effects of cytosine base editor by using dual guiders including sgRNA and TALE[J]. Molecular Therapy, 2022, 30(7): 2443-2451. doi: 10.1016/j.ymthe.2022.04.010
|
[138] |
JIN S, GAO Q, GAO C. An unbiased method for evaluating the genome-wide specificity of base editors in rice[J]. Nature Protocols, 2021, 16(1): 431-457. doi: 10.1038/s41596-020-00423-y
|
[139] |
KIM D, KIM D, LEE G, et al. Genome-wide target specificity of CRISPR RNA-guided adenine base editors[J]. Nature Biotechnology, 2019, 37(4): 430-435. doi: 10.1038/s41587-019-0050-1
|
[140] |
MAO Y, BOTELLA J R, LIU Y, et al. Gene editing in plants: Progress and challenges[J]. National Science Review, 2019, 6(3): 421-437. doi: 10.1093/nsr/nwz005
|
[141] |
TANG J, CHEN L, LIU Y G. Off-target effects and the solution[J]. Nature Plants, 2019, 5(4): 341-342. doi: 10.1038/s41477-019-0406-z
|
[142] |
WEI Y, LI Z, XU K, et al. Mitochondrial base editor DdCBE causes substantial DNA off-target editing in nuclear genome of embryos[J]. Cell Discovery, 2022, 8(1): 27. doi: 10.1038/s41421-022-00391-5
|
[143] |
LEI Z, MENG H, LIU L, et al. Mitochondrial base editor induces substantial nuclear off-target mutations[J]. Nature, 2022, 606(7915): 804-811. doi: 10.1038/s41586-022-04836-5
|
[144] |
ZHUANG Y, LIU J, WU H, et al. Increasing the efficiency and precision of prime editing with guide RNA pairs[J]. Nature Chemical Biology, 2022, 18(1): 29-37. doi: 10.1038/s41589-021-00889-1
|