Citation: | JIANG Tianqing, DENG Yiqun, WEN Jikai. Research progress on the relationship between membraneless organelle and cellular stress response[J]. Journal of South China Agricultural University, 2022, 43(6): 136-147. DOI: 10.7671/j.issn.1001-411X.202208023 |
Membraneless organelles are cellular compartments that lack a separating membrane. Membraneless organelles play critical roles in multiple biological processes, including gene transcription, RNA metabolism, translation, protein modification, signal transduction, and so on. When the cells are stimulated, they initiate a series of stress responses to maintain homeostasis. Membraneless organelles formed by liquid-liquid phase separation have liquid-like properties, can rapidly respond to stress and play an important role in cellular stress responses. In this paper, we chose stress granules, P-bodies, nucleolus and Cajal bodies as representatives of membraneless organelles, and summarized the relationships between membraneless organelles and stress responses, and its links of membraneless organelles to disease.
[1] |
WANG B, ZHANG L, DAI T, et al. Liquid-liquid phase separation in human health and diseases[J]. Signal Transduction and Targeted Therapy, 2021, 6(1): 290. doi: 10.1038/s41392-021-00678-1
|
[2] |
GUZIKOWSKI A R, CHEN Y S, ZID B M. Stress-induced mRNP granules: Form and function of processing bodies and stress granules[J]. Wiley Interdisciplinary Reviews-RNA, 2019, 10(3): e1524.
|
[3] |
MITREA D M, KRIWACKI R W. Phase separation in biology: Functional organization of a higher order[J]. Cell Communication and Signaling, 2016, 14: 1-20. doi: 10.1186/s12964-015-0125-7
|
[4] |
OW Y P, GREEN D R, HAO Z, et al. Cytochrome c: Functions beyond respiration[J]. Nature Reviews Molecular Cell Biology, 2008, 9(7): 532-542. doi: 10.1038/nrm2434
|
[5] |
WEST A P, SHADEL G S. Mitochondrial DNA in innate immune responses and inflammatory pathology[J]. Nature Reviews Immunology, 2017, 17(6): 363-375. doi: 10.1038/nri.2017.21
|
[6] |
DUMETZ A C, CHOCKLA A M, KALER E W, et al. Protein phase behavior in aqueous solutions: Crystallization, liquid-liquid phase separation, gels, and aggregates[J]. Biophysical Journal, 2008, 94(2): 570-583. doi: 10.1529/biophysj.107.116152
|
[7] |
BANANI S F, LEE H O, HYMAN A A, et al. Biomolecular condensates: Organizers of cellular biochemistry[J]. Nature Reviews Molecular Cell Biology, 2017, 18(5): 285-298. doi: 10.1038/nrm.2017.7
|
[8] |
WANG J, CHOI J M, HOLEHOUSE A S, et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins[J]. Cell, 2018, 174(3): 688-699. doi: 10.1016/j.cell.2018.06.006
|
[9] |
LI P, BANJADE S, CHENG H C, et al. Phase transitions in the assembly of multivalent signalling proteins[J]. Nature, 2012, 483(7389): 336-340. doi: 10.1038/nature10879
|
[10] |
SU X, DITLEV J A, HUI E, et al. Phase separation of signaling molecules promotes T cell receptor signal transduction[J]. Science, 2016, 352(6285): 595-599. doi: 10.1126/science.aad9964
|
[11] |
BOEYNAEMS S, ALBERTI S, FAWZI N L, et al. Protein phase separation: A new phase in cell biology[J]. Trends in Cell Biology, 2018, 28(6): 420-435. doi: 10.1016/j.tcb.2018.02.004
|
[12] |
RIBACK J A, KATANSKI C D, KEAR-SCOTT J L, et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response[J]. Cell, 2017, 168(6): 1028-1040. doi: 10.1016/j.cell.2017.02.027
|
[13] |
HOFMANN S, KEDERSHA N, ANDERSON P, et al. Molecular mechanisms of stress granule assembly and disassembly[J]. Biochimica et Biophysica Acta-Molecular Cell Research, 2021, 1868(1): 118876. doi: 10.1016/j.bbamcr.2020.118876
|
[14] |
CORBET G A, PARKER R. RNP Granule formation: Lessons from P-bodies and stress granules[J]. Cold Spring Harbor Symposia on Quantitative Biology, 2019, 84: 203-215. doi: 10.1101/sqb.2019.84.040329
|
[15] |
MATHENY T, VAN TREECK B, HUYNH T N, et al. RNA partitioning into stress granules is based on the summation of multiple interactions[J]. RNA, 2021, 27(2): 174-189. doi: 10.1261/rna.078204.120
|
[16] |
TOURRIERE H, CHEBLI K, ZEKRI L, et al. The RasGAP-associated endoribonuclease G3BP assembles stress granules[J]. Journal of Cell Biology, 2003, 160(6): 823-831. doi: 10.1083/jcb.200212128
|
[17] |
SOLOMON S, XU Y, WANG B, et al. Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2α, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs[J]. Molecular and Cellular Biology, 2007, 27(6): 2324-2342. doi: 10.1128/MCB.02300-06
|
[18] |
KEDERSHA N, PANAS M D, ACHORN C A, et al. G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits[J]. Journal of Cell Biology, 2016, 212(7): 845-860.
|
[19] |
YANG X, SHEN Y, GARRE E, et al. Stress granule-defective mutants deregulate stress responsive transcripts[J]. PLoS Genetics, 2014, 10(11): e1004763. doi: 10.1371/journal.pgen.1004763
|
[20] |
SRIVASTAVA S P, KUMAR K U, KAUFMAN R J. Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase[J]. Journal of Biological Chemistry, 1998, 273(4): 2416-2423. doi: 10.1074/jbc.273.4.2416
|
[21] |
HARDING H P, ZHANG Y, BERTOLOTTI A, et al. Perk is essential for translational regulation and cell survival during the unfolded protein response[J]. Molecular Cell, 2000, 5(5): 897-904. doi: 10.1016/S1097-2765(00)80330-5
|
[22] |
WEK S A, ZHU S, WEK R C. The histidyl-tRNA synthetase-related sequence in the eIF-2α protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids[J]. Molecular and Cellular Biology, 1995, 15(8): 4497-4506. doi: 10.1128/MCB.15.8.4497
|
[23] |
MCEWEN E, KEDERSHA N, SONG B, et al. Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure[J]. Journal of Biological Chemistry, 2005, 280(17): 16925-16933. doi: 10.1074/jbc.M412882200
|
[24] |
LOW W K, DANG Y, SCHNEIDER-POETSCH T, et al. Inhibition of eukaryotic translation initiation by the marine natural product pateamine A[J]. Molecular Cell, 2005, 20(5): 709-722. doi: 10.1016/j.molcel.2005.10.008
|
[25] |
EMARA M M, FUJIMURA K, SCIARANGHELLA D, et al. Hydrogen peroxide induces stress granule formation independent of eIF2α phosphorylation[J]. Biochemical and Biophysical Research Communications, 2012, 423(4): 763-769. doi: 10.1016/j.bbrc.2012.06.033
|
[26] |
BOUNEDJAH O, HAMON L, SAVARIN P, et al. Macromolecular crowding regulates assembly of mRNA stress granules after osmotic stress: New role for compatible osmolytes[J]. Journal of Biological Chemistry, 2012, 287(4): 2446-2458. doi: 10.1074/jbc.M111.292748
|
[27] |
AYACHE J, BENARD M, ERNOULT-LANGE M, et al. P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes[J]. Molecular Biology of the Cell, 2015, 26(14): 2579-2595. doi: 10.1091/mbc.E15-03-0136
|
[28] |
MINSHALL N, KRESS M, WEIL D, et al. Role of p54 RNA helicase activity and its C-terminal domain in translational repression, P-body localization and assembly[J]. Molecular Biology of the Cell, 2009, 20(9): 2464-2472. doi: 10.1091/mbc.e09-01-0035
|
[29] |
STOECKLIN G, KEDERSHA N. Relationship of GW/P-bodies with stress granules[J]. Advances in Experimental Medicine and Biology, 2013, 768: 197-211.
|
[30] |
IVANOV P, KEDERSHA N, ANDERSON P. Stress granules and processing bodies in translational control[J]. Cold Spring Harbor Perspectives in Biology, 2019, 11(5): a032813.
|
[31] |
EULALIO A, BEHM-ANSMANT I, SCHWEIZER D, et al. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing[J]. Molecular and Cellular Biology, 2007, 27(11): 3970-3981. doi: 10.1128/MCB.00128-07
|
[32] |
BRENGUES M, TEIXEIRA D, PARKER R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies[J]. Science, 2005, 310(5747): 486-489. doi: 10.1126/science.1115791
|
[33] |
FRANKS T M, LYKKE-ANDERSEN J. The control of mRNA decapping and P-body formation[J]. Molecular Cell, 2008, 32(5): 605-615. doi: 10.1016/j.molcel.2008.11.001
|
[34] |
PARKER R, SHETH U. P bodies and the control of mRNA translation and degradation[J]. Molecular Cell, 2007, 25(5): 635-646. doi: 10.1016/j.molcel.2007.02.011
|
[35] |
ANDERSON P, KEDERSHA N. Stressful initiations[J]. Journal of Cell Science, 2002, 115(Pt 16): 3227-3234.
|
[36] |
ANDERSON P, KEDERSHA N. RNA granules[J]. Journal of Cell Biology, 2006, 172(6): 803-808. doi: 10.1083/jcb.200512082
|
[37] |
LEUNG A K, CALABRESE J M, SHARP P A. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(48): 18125-18130. doi: 10.1073/pnas.0608845103
|
[38] |
LIU J, VALENCIA-SANCHEZ M A, HANNON G J, et al. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies[J]. Nature Cell Biology, 2005, 7(7): 719-723. doi: 10.1038/ncb1274
|
[39] |
KEDERSHA N, ANDERSON P. Stress granules: Sites of mRNA triage that regulate mRNA stability and translatability[J]. Biochemical Society Transactions, 2002, 30(Pt 6): 963-969.
|
[40] |
BAGUET A, DEGOT S, COUGOT N, et al. The exon-junction-complex-component metastatic lymph node 51 functions in stress-granule assembly[J]. Journal of Cell Science, 2007, 120(Pt 16): 2774-2784.
|
[41] |
RUBTSOVA M P, SIZOVA D V, DMITRIEV S E, et al. Distinctive properties of the 5'-untranslated region of human hsp70 mRNA[J]. Journal of Biological Chemistry, 2003, 278(25): 22350-22356. doi: 10.1074/jbc.M303213200
|
[42] |
MAZROUI R, SUKARIEH R, BORDELEAU M E, et al. Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation[J]. Molecular Biology of the Cell, 2006, 17(10): 4212-4219. doi: 10.1091/mbc.e06-04-0318
|
[43] |
KEDERSHA N, STOECKLIN G, AYODELE M, et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling[J]. Journal of Cell Biology, 2005, 169(6): 871-884. doi: 10.1083/jcb.200502088
|
[44] |
HUBSTENBERGER A, COUREL M, BENARD M, et al. P-body purification reveals the condensation of repressed mRNA regulons[J]. Molecular Cell, 2017, 68(1): 144-157. doi: 10.1016/j.molcel.2017.09.003
|
[45] |
HORVATHOVA I, VOIGT F, KOTRYS A V, et al. The dynamics of mRNA turnover revealed by single-molecule imaging in single cells[J]. Molecular Cell, 2017, 68(3): 615-625. doi: 10.1016/j.molcel.2017.09.030
|
[46] |
TUTUCCI E, LIVINGSTON N M, SINGER R H, et al. Imaging mRNA in vivo, from birth to death[J]. Annual Review of Biophysics, 2018, 47: 85-106. doi: 10.1146/annurev-biophys-070317-033037
|
[47] |
HUCH S, NISSAN T. An mRNA decapping mutant deficient in P body assembly limits mRNA stabilization in response to osmotic stress[J]. Scientific Reports, 2017, 7(1): 44395.
|
[48] |
SCHUTZ S, NOLDEKE E R, SPRANGERS R. A synergistic network of interactions promotes the formation of in vitro processing bodies and protects mRNA against decapping[J]. Nucleic Acids Research, 2017, 45(11): 6911-6922. doi: 10.1093/nar/gkx353
|
[49] |
KEDERSHA N, IVANOV P, ANDERSON P. Stress granules and cell signaling: More than just a passing phase?[J]. Trends in Biochemical Sciences, 2013, 38(10): 494-506. doi: 10.1016/j.tibs.2013.07.004
|
[50] |
ARIMOTO K, FUKUDA H, IMAJOH-OHMI S, et al. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways[J]. Nature Cell Biology, 2008, 10(11): 1324-1332. doi: 10.1038/ncb1791
|
[51] |
SAMIR P, KESAVARDHANA S, PATMORE D M, et al. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome[J]. Nature, 2019, 573(7775): 590-594. doi: 10.1038/s41586-019-1551-2
|
[52] |
EFEYAN A, ZONCU R, SABATINI D M. Amino acids and mTORC1: From lysosomes to disease[J]. Trends in Molecular Medicine, 2012, 18(9): 524-533. doi: 10.1016/j.molmed.2012.05.007
|
[53] |
YAN G, LAI Y, JIANG Y. The TOR complex 1 is a direct target of Rho1 GTPase[J]. Molecular Cell, 2012, 45(6): 743-753. doi: 10.1016/j.molcel.2012.01.028
|
[54] |
WIPPICH F, BODENMILLER B, TRAJKOVSKA M G, et al. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling[J]. Cell, 2013, 152(4): 791-805. doi: 10.1016/j.cell.2013.01.033
|
[55] |
TAKAHARA T, MAEDA T. Transient sequestration of TORC1 into stress granules during heat stress[J]. Molecular Cell, 2012, 47(2): 242-252. doi: 10.1016/j.molcel.2012.05.019
|
[56] |
YOUN J Y, DUNHAM W H, HONG S J, et al. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies[J]. Molecular Cell, 2018, 69(3): 517-532. doi: 10.1016/j.molcel.2017.12.020
|
[57] |
DEMAGGIO A J, LINDBERG R A, HUNTER T, et al. The budding yeast HRR25 gene product is a casein kinase I isoform[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(15): 7008-7012. doi: 10.1073/pnas.89.15.7008
|
[58] |
ARGUELLO-MIRANDA O, ZAGORIY I, MENGOLI V, et al. Casein kinase 1 coordinates cohesin cleavage, gametogenesis, and exit from M phase in meiosis II[J]. Developmental Cell, 2017, 40(1): 37-52. doi: 10.1016/j.devcel.2016.11.021
|
[59] |
GHALEI H, SCHAUB F X, DOHERTY J R, et al. Hrr25/CK1δ-directed release of Ltv1 from pre-40S ribosomes is necessary for ribosome assembly and cell growth[J]. Journal of Cell Biology, 2015, 208(6): 745-759. doi: 10.1083/jcb.201409056
|
[60] |
HOEKSTRA M F, LISKAY R M, OU A C, et al. HRR25, a putative protein kinase from budding yeast: Association with repair of damaged DNA[J]. Science, 1991, 253(5023): 1031-1034. doi: 10.1126/science.1887218
|
[61] |
LORD C, BHANDARI D, MENON S, et al. Sequential interactions with Sec23 control the direction of vesicle traffic[J]. Nature, 2011, 473(7346): 181-186. doi: 10.1038/nature09969
|
[62] |
PENG Y, GRASSART A, LU R, et al. Casein kinase 1 promotes initiation of clathrin-mediated endocytosis[J]. Developmental Cell, 2015, 32(2): 231-240. doi: 10.1016/j.devcel.2014.11.014
|
[63] |
ZHANG B, SHI Q, VARIA S N, et al. The activity-dependent regulation of protein kinase stability by the localization to P-bodies[J]. Genetics, 2016, 203(3): 1191-1202. doi: 10.1534/genetics.116.187419
|
[64] |
ZHANG B, BUTLER A M, SHI Q, et al. P-body localization of the Hrr25/casein kinase 1 protein kinase is required for the completion of meiosis[J]. Molecular and Cellular Biology, 2018, 38(17): e00678-e00617.
|
[65] |
EMARA M M, BRINTON M A. Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(21): 9041-9046. doi: 10.1073/pnas.0703348104
|
[66] |
WHITE J P, LLOYD R E. Poliovirus unlinks TIA1 aggregation and mRNA stress granule formation[J]. Journal of Virology, 2011, 85(23): 12442-12454. doi: 10.1128/JVI.05888-11
|
[67] |
RUGGIERI A, DAZERT E, METZ P, et al. Dynamic oscillation of translation and stress granule formation mark the cellular response to virus infection[J]. Cell Host & Microbe, 2012, 12(1): 71-85.
|
[68] |
ALBORNOZ A, CARLETTI T, CORAZZA G, et al. The stress granule component TIA-1 binds tick-borne encephalitis virus RNA and is recruited to perinuclear sites of viral replication to inhibit viral translation[J]. Journal of Virology, 2014, 88(12): 6611-6622. doi: 10.1128/JVI.03736-13
|
[69] |
RAABEN M, GROOT K M, ROTTIER P J, et al. Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and processing bodies[J]. Cellular Microbiology, 2007, 9(9): 2218-2229. doi: 10.1111/j.1462-5822.2007.00951.x
|
[70] |
MONTERO H, ROJAS M, ARIAS C F, et al. Rotavirus infection induces the phosphorylation of eIF2alpha but prevents the formation of stress granules[J]. Journal of Virology, 2008, 82(3): 1496-1504. doi: 10.1128/JVI.01779-07
|
[71] |
ABRAHAMYAN L G, CHATEL-CHAIX L, AJAMIAN L, et al. Novel Staufen1 ribonucleoproteins prevent formation of stress granules but favour encapsidation of HIV-1 genomic RNA[J]. Journal of Cell Science, 2010, 123(Pt 3): 369-383.
|
[72] |
ROJAS M, ARIAS C F, LOPEZ S. Protein kinase R is responsible for the phosphorylation of eIF2α in rotavirus infection[J]. Journal of Virology, 2010, 84(20): 10457-10466. doi: 10.1128/JVI.00625-10
|
[73] |
LINDQUIST M E, MAINOU B A, DERMODY T S, et al. Activation of protein kinase R is required for induction of stress granules by respiratory syncytial virus but dispensable for viral replication[J]. Virology, 2011, 413(1): 103-110. doi: 10.1016/j.virol.2011.02.009
|
[74] |
LINERO F N, THOMAS M G, BOCCACCIO G L, et al. Junin virus infection impairs stress-granule formation in vero cells treated with arsenite via inhibition of eIF2α phosphorylation[J]. Journal of General Virology, 2011, 92(Pt 12): 2889-2899.
|
[75] |
FRITZLAR S, AKTEPE T E, CHAO Y W, et al. Mouse norovirus infection arrests host cell translation uncoupled from the stress granule-PKR-eIF2α axis[J]. mBio, 2019, 10(3): e00960-e00919. doi: 10.1128/mBio.00960-19.
|
[76] |
ZHU Y, WANG B, HUANG H, et al. Enterovirus 71 induces anti-viral stress granule-like structures in RD cells[J]. Biochemical and Biophysical Research Communications, 2016, 476(4): 212-217. doi: 10.1016/j.bbrc.2016.05.094
|
[77] |
SEN G L, BLAU H M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies[J]. Nature Cell Biology, 2005, 7(6): 633-636. doi: 10.1038/ncb1265
|
[78] |
HEBNER C M, WILSON R, RADER J, et al. Human papillomaviruses target the double-stranded RNA protein kinase pathway[J]. Journal of General Virology, 2006, 87(Pt 11): 3183-3193.
|
[79] |
NATHANS R, CHU C Y, SERQUINA A K, et al. Cellular microRNA and P bodies modulate host-HIV-1 interactions[J]. Molecular Cell, 2009, 34(6): 696-709. doi: 10.1016/j.molcel.2009.06.003
|
[80] |
DOUGHERTY J D, WHITE J P, LLOYD R E. Poliovirus-mediated disruption of cytoplasmic processing bodies[J]. Journal of Virology, 2011, 85(1): 64-75. doi: 10.1128/JVI.01657-10
|
[81] |
OCEGUERA A, PERALTA A V, MARTINEZ-DELGADO G, et al. Rotavirus RNAs sponge host cell RNA binding proteins and interfere with their subcellular localization[J]. Virology, 2018, 525: 96-105. doi: 10.1016/j.virol.2018.09.013
|
[82] |
BHOWMICK R, MUKHERJEE A, PATRA U, et al. Rotavirus disrupts cytoplasmic P bodies during infection[J]. Virus Research, 2015, 210: 344-354. doi: 10.1016/j.virusres.2015.09.001
|
[83] |
DHILLON P, RAO C D. Rotavirus induces formation of remodeled stress granules and P bodies and their sequestration in viroplasms to promote progeny virus production[J]. Journal of Virology, 2018, 92(24): e01363-e01318. doi: 10.1128/JVI.01363-18.
|
[84] |
KRESSLER D, HURT E, BASSLER J. Driving ribosome assembly[J]. Biochimica et Biophysica Acta-Molecular Cell Research, 2010, 1803(6): 673-683. doi: 10.1016/j.bbamcr.2009.10.009
|
[85] |
CORRELL C C, BARTEK J, DUNDR M. The nucleolus: A multiphase condensate balancing ribosome synthesis and translational capacity in health, aging and ribosomopathies[J]. Cells, 2019, 8(8): 869. doi: 10.3390/cells8080869.
|
[86] |
LAFARGA M, CASAFONT I, BENGOECHEA R, et al. Cajal’s contribution to the knowledge of the neuronal cell nucleus[J]. Chromosoma, 2009, 118(4): 437-443. doi: 10.1007/s00412-009-0212-x
|
[87] |
MACHYNA M, HEYN P, NEUGEBAUER K M. Cajal bodies: Where form meets function[J]. Wiley Interdisciplinary Reviews-RNA, 2013, 4(1): 17-34. doi: 10.1002/wrna.1139
|
[88] |
AL-BAKER E A, OSHIN M, HUTCHISON C J, et al. Analysis of UV-induced damage and repair in young and senescent human dermal fibroblasts using the comet assay[J]. Mechanisms of Ageing and Development, 2005, 126(6/7): 664-672. doi: 10.1016/j.mad.2004.12.002
|
[89] |
GRECO A. Involvement of the nucleolus in replication of human viruses[J]. Reviews in Medical Virology, 2009, 19(4): 201-214. doi: 10.1002/rmv.614
|
[90] |
HISCOX J A. RNA viruses: Hijacking the dynamic nucleolus[J]. Nature Reviews Microbiology, 2007, 5(2): 119-127. doi: 10.1038/nrmicro1597
|
[91] |
XIAO L, GROVE A. Coordination of ribosomal protein and ribosomal RNA gene expression in response to TOR signaling[J]. Current Genomics, 2009, 10(3): 198-205. doi: 10.2174/138920209788185261
|
[92] |
BELIN S, KINDBEITER K, HACOT S, et al. Uncoupling ribosome biogenesis regulation from RNA polymerase I activity during herpes simplex virus type 1 infection[J]. RNA, 2010, 16(1): 131-140. doi: 10.1261/rna.1935610
|
[93] |
YANG K, WANG M, ZHAO Y, et al. A redox mechanism underlying nucleolar stress sensing by nucleophosmin[J]. Nature Communications, 2016, 7: 13599. doi: 10.1038/ncomms13599
|
[94] |
DONATI G, PEDDIGARI S, MERCER C A, et al. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint[J]. Cell Reports, 2013, 4(1): 87-98. doi: 10.1016/j.celrep.2013.05.045
|
[95] |
SLOAN K E, BOHNSACK M T, WATKINS N J. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress[J]. Cell Reports, 2013, 5(1): 237-247. doi: 10.1016/j.celrep.2013.08.049
|
[96] |
BURSAC S, BRDOVCAK M C, PFANNKUCHEN M, et al. Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(50): 20467-20472. doi: 10.1073/pnas.1218535109
|
[97] |
LATONEN L. Phase-to-phase with nucleoli - stress responses, protein aggregation and novel roles of RNA[J]. Frontiers in Cellular Neuroscience, 2019, 13: 151. doi: 10.3389/fncel.2019.00151
|
[98] |
EMMOTT E, HISCOX J A. Nucleolar targeting: The hub of the matter[J]. EMBO Reports, 2009, 10(3): 231-238. doi: 10.1038/embor.2009.14
|
[99] |
AUDAS T E, JACOB M D, LEE S. Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA[J]. Molecular Cell, 2012, 45(2): 147-157. doi: 10.1016/j.molcel.2011.12.012
|
[100] |
FROTTIN F, SCHUEDER F, TIWARY S, et al. The nucleolus functions as a phase-separated protein quality control compartment[J]. Science, 2019, 365(6451): 342-347. doi: 10.1126/science.aaw9157
|
[101] |
MEDIANI L, GUILLEN-BOIXET J, VINET J, et al. Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin[J]. EMBO Journal, 2019, 38(15): e101341.
|
[102] |
ANDRADE L E, TAN E M, CHAN E K. Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(5): 1947-1951. doi: 10.1073/pnas.90.5.1947
|
[103] |
CIOCE M, BOULON S, MATERA A G, et al. UV-induced fragmentation of Cajal bodies[J]. Journal of Cell Biology, 2006, 175(3): 401-413. doi: 10.1083/jcb.200604099
|
[104] |
MORENCY E, SABRA M, CATEZ F, et al. A novel cell response triggered by interphase centromere structural instability[J]. Journal of Cell Biology, 2007, 177(5): 757-768. doi: 10.1083/jcb.200612107
|
[105] |
JAMES N J, HOWELL G J, WALKER J H, et al. The role of Cajal bodies in the expression of late phase adenovirus proteins[J]. Virology, 2010, 399(2): 299-311. doi: 10.1016/j.virol.2010.01.013
|
[106] |
PALANCA A, CASAFONT I, BERCIANO M T, et al. Reactive nucleolar and Cajal body responses to proteasome inhibition in sensory ganglion neurons[J]. Biochimica et Biophysica Acta-Molecular Basis of Disease, 2014, 1842(6): 848-859. doi: 10.1016/j.bbadis.2013.11.016
|
[107] |
ANDERSON P, KEDERSHA N, IVANOV P. Stress granules, P-bodies and cancer[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms, 2015, 1849(7): 861-870. doi: 10.1016/j.bbagrm.2014.11.009
|
[108] |
HEBERLE A M, RAZQUIN N P, LANGELAAR-MAKKINJE M, et al. The PI3K and MAPK/p38 pathways control stress granule assembly in a hierarchical manner[J]. Life Science Alliance, 2019, 2(2): e201800257. doi: 10.26508/lsa.201800257.
|
[109] |
SFAKIANOS A P, MELLOR L E, PANG Y F, et al. The mTOR-S6 kinase pathway promotes stress granule assembly[J]. Cell Death and Differentiation, 2018, 25(10): 1766-1780. doi: 10.1038/s41418-018-0076-9
|
[110] |
VILAS-BOAS F A, DA S A, DE SOUSA L P, et al. Impairment of stress granule assembly via inhibition of the eIF2alpha phosphorylation sensitizes glioma cells to chemotherapeutic agents[J]. Journal of Neuro-Oncology, 2016, 127(2): 253-260. doi: 10.1007/s11060-015-2043-3
|
[111] |
FOURNIER M J, GAREAU C, MAZROUI R. The chemotherapeutic agent bortezomib induces the formation of stress granules[J]. Cancer Cell International, 2010, 10: 12. doi: 10.1186/1475-2867-10-12
|
[112] |
KAEHLER C, ISENSEE J, HUCHO T, et al. 5-Fluorouracil affects assembly of stress granules based on RNA incorporation[J]. Nucleic Acids Research, 2014, 42(10): 6436-6447. doi: 10.1093/nar/gku264
|
[113] |
SOMASEKHARAN S P, EL-NAGGAR A, LEPRIVIER G, et al. YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1[J]. Journal of Cell Biology, 2015, 208(7): 913-929. doi: 10.1083/jcb.201411047
|
[114] |
SCHNEIDER J W, OOMMEN S, QURESHI M Y, et al. Dysregulated ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs[J]. Nature Medicine, 2020, 26(11): 1788-1800. doi: 10.1038/s41591-020-1087-x
|
[115] |
WEGMANN S, EFTEKHARZADEH B, TEPPER K, et al. Tau protein liquid-liquid phase separation can initiate tau aggregation[J]. EMBO Journal, 2018, 37(7): e98049.
|
[116] |
CHEW J, COOK C, GENDRON T F, et al. Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy[J]. Molecular Neurodegeneration, 2019, 14(1): 9. doi: 10.1186/s13024-019-0310-z
|
[117] |
DENG Z, LIM J, WANG Q, et al. ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway[J]. Autophagy, 2020, 16(5): 917-931. doi: 10.1080/15548627.2019.1644076
|
[118] |
REPICI M, HASSANJANI M, MADDISON D C, et al. The Parkinson’s disease-linked protein DJ-1 associates with cytoplasmic mRNP granules during stress and neurodegeneration[J]. Molecular Neurobiology, 2019, 56(1): 61-77. doi: 10.1007/s12035-018-1084-y
|
[119] |
ZHU S, GU J, YAO J, et al. Liquid-liquid phase separation of RBGD2/4 is required for heat stress resistance in Arabidopsis[J]. Developmental Cell, 2022, 57(5): 583-597. doi: 10.1016/j.devcel.2022.02.005
|