• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
DENG Yiqun, LIN Ruqin, WU Siting, et al. Research progress in toxicological mechanism and prevention strategy of deoxynivalenol[J]. Journal of South China Agricultural University, 2022, 43(6): 87-96. DOI: 10.7671/j.issn.1001-411X.202208017
Citation: DENG Yiqun, LIN Ruqin, WU Siting, et al. Research progress in toxicological mechanism and prevention strategy of deoxynivalenol[J]. Journal of South China Agricultural University, 2022, 43(6): 87-96. DOI: 10.7671/j.issn.1001-411X.202208017

Research progress in toxicological mechanism and prevention strategy of deoxynivalenol

More Information
  • Received Date: August 09, 2022
  • Available Online: May 17, 2023
  • Deoxynivalenol (DON) is one of the most common and serious polluted mycotoxins that contaminate grains, feed ingredients and feed. The acute or chronic poisoning symptoms of feed-borne exposure to DON in animals are vomiting, diarrhea, feed refusal, weight loss and even death, which seriously threatens the healthy breeding of animal. The toxicity mechanism and metabolic transformation of DON are the research hotspots in the fields of agriculture and food. This article reviews the latest domestic and international research progress in the cytotoxicological mechanism, biological prevention methods and detoxification microorganism screening of DON. It is expected to provide references for prevention and control of the harm of DON to animal.

  • [1]
    PINTON P, OSWALD I P. Effect of deoxynivalenol and other type B trichothecenes on the intestine: A review[J]. Toxins, 2014, 6(5): 1615-1643. doi: 10.3390/toxins6051615
    [2]
    KHOSHAL A K, NOVAK B, MARTIN P G P, et al. Co-occurrence of DON and emerging mycotoxins in worldwide finished pig feed and their combined toxicity in intestinal cells[J]. Toxins, 2019, 11(12): 727. doi: 10.3390/toxins11120727.
    [3]
    ZHAO Y J, GUAN X L, ZONG Y, et al. Deoxynivalenol in wheat from the Northwestern region in China[J]. Food Additives & Contaminants: Part B, 2018, 11(4): 281-285.
    [4]
    王国强. 2019年我国部分地区饲料及饲料原料霉菌毒素污染调查报告[J]. 养猪, 2020(2): 14-16. doi: 10.3969/j.issn.1002-1957.2020.02.005
    [5]
    李孟聪, 丁燕玲, 谭磊, 等. 2020年广东省动物饲料中4种主要霉菌毒素污染调查[J]. 畜牧与兽医, 2021, 53(5): 122-126.
    [6]
    MARESCA M, FANTINI J. Some food-associated mycotoxins as potential risk factors in humans predisposed to chronic intestinal inflammatory diseases[J]. Toxicon, 2010, 56(3): 282-294. doi: 10.1016/j.toxicon.2010.04.016
    [7]
    PAYROS D, ALASSANE-KPEMBI I, PIERRON A, et al. Toxicology of deoxynivalenol and its acetylated and modified forms[J]. Archives of Toxicology, 2016, 90(12): 2931-2957. doi: 10.1007/s00204-016-1826-4
    [8]
    SUNDHEIM L, LILLEGAARD I T, FAESTE C K, et al. Deoxynivalenol exposure in Norway, risk assessments for different human age groups[J]. Toxins, 2017, 9(2): 46. doi: 10.3390/toxins9020046.
    [9]
    HOOFT J M, BUREAU D P. Deoxynivalenol: Mechanisms of action and its effects on various terrestrial and aquatic species[J]. Food and Chemical Toxicology, 2021, 157: 112616. doi: 10.1016/j.fct.2021.112616.
    [10]
    WANG Z H, WU Q H, KUČA K, et al. Deoxynivalenol: Signaling pathways and human exposure risk assessment: An update[J]. Archives of Toxicology, 2014, 88(11): 1915-1928. doi: 10.1007/s00204-014-1354-z
    [11]
    LI X, MU P, WEN J, et al. Carrier-mediated and energy-dependent uptake and efflux of deoxynivalenol in mammalian cells[J/OL]. Scientific Reports, 2017, 7(1): 5889. [2022-08-01]. https://doi.org/10.1038/s41598-017-06199-8.
    [12]
    LI X M, MU P Q, QIAO H, et al. JNK-AKT-NF-κB controls P-glycoprotein expression to attenuate the cytotoxicity of deoxynivalenol in mammalian cells[J]. Biochemical Pharmacology, 2018, 156: 120-134. doi: 10.1016/j.bcp.2018.08.020
    [13]
    YUAN L P, MU P Q, HUANG B Y, et al. EGR1 is essential for deoxynivalenol-induced G2/M cell cycle arrest in HepG2 cells via the ATF3ΔZip2a/2b-EGR1-p21 pathway[J]. Toxicology Letters, 2018, 299: 95-103. doi: 10.1016/j.toxlet.2018.09.012
    [14]
    HU Z S, SUN Y, CHEN J J, et al. Deoxynivalenol globally affects the selection of 3' splice sites in human cells by suppressing the splicing factors, U2AF1 and SF1[J]. RNA Biology, 2020, 17(4): 584-495. doi: 10.1080/15476286.2020.1719750
    [15]
    LIN R Q, SUN Y, MU P Q, et al. Lactobacillus rhamnosus GG supplementation modulates the gut microbiota to promote butyrate production, protecting against deoxynivalenol exposure in nude mice[J]. Biochemical Pharmacology, 2020, 175: 113868. doi: 10.1016/j.bcp.2020.113868.
    [16]
    QIAO H, JIANG T Q, MU P Q, et al. Cell fate determined by the activation balance between PKR and SPHK1[J]. Cell Death and Differentiation, 2021, 28(1): 401-418.
    [17]
    YANG Y X, YU S, LIU N, et al. Transcription factor FOXO3a is a negative regulator of cytotoxicity of Fusarium mycotoxin in GES-1 cells[J]. Toxicological Sciences, 2018, 166(2): 370-381.
    [18]
    NDLOVU S, NAGIAH S, ABDUL N S, et al. Deoxynivalenol downregulates NRF2-induced cytoprotective response in human hepatocellular carcinoma (HepG2) cells[J]. Toxicon, 2021, 193: 4-12. doi: 10.1016/j.toxicon.2021.01.017
    [19]
    MAO X X, LI J, XIE X, et al. Deoxynivalenol induces caspase-3/GSDME-dependent pyroptosis and inflammation in mouse liver and HepaRG cells[J/OL]. Archives of Toxicology, 2022. [2022-08-01]. https://doi.org/10.1007/s00204-022-03344-9.
    [20]
    TANG S L, CHEN S, HUANG B Y, et al. Deoxynivalenol induces inhibition of cell proliferation via the Wnt/β-catenin signaling pathway[J]. Biochemical Pharmacology, 2019, 166: 12-22. doi: 10.1016/j.bcp.2019.05.009
    [21]
    LI X G, ZHU M, CHEN M X, et al. Acute exposure to deoxynivalenol inhibits porcine enteroid activity via suppression of the Wnt/β-catenin pathway[J]. Toxicology Letters, 2019, 305: 19-31. doi: 10.1016/j.toxlet.2019.01.008
    [22]
    PAI S G, CARNEIRO B A, MOTA J M, et al. Wnt/beta-catenin pathway: Modulating anticancer immune response[J]. Journal of Hematology & Oncology, 2017, 10(1): 1-12.
    [23]
    MU H B, MU P Q, ZHU W Y, et al. Low doses of deoxynivalenol inhibit the cell migration mediated by H3K27me3-targeted downregulation of TEM8 expression[J]. Biochemical Pharmacology, 2020, 175: 113897. doi: 10.1016/j.bcp.2020.113897.
    [24]
    ZHAO Y, TANG S, LIN R, et al. Deoxynivalenol exposure suppresses adipogenesis by inhibiting the expression of peroxisome proliferator-activated receptor gamma 2 (PPARγ2) in 3T3-L1 cells[J]. International Journal of Molecular Sciences, 2020, 21(17): 6300. doi: 10.3390/ijms21176300.
    [25]
    WANG S, YANG J C, ZHANG B Y, et al. Deoxynivalenol impairs porcine intestinal host defense peptide expression in weaned piglets and IPEC-J2 Cells[J]. Toxins, 2018, 10(12): 541. doi: 10.3390/toxins10120541.
    [26]
    GU X L, GUO W Y, ZHAO Y J, et al. Deoxynivalenol-induced cytotoxicity and apoptosis in IPEC-J2 cells through the activation of autophagy by inhibiting PI3K-AKT-mTOR signaling pathway[J]. ACS Omega, 2019, 4(19): 18478-18486. doi: 10.1021/acsomega.9b03208
    [27]
    KANG R F, LI R N, DAI P Y, et al. Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production[J]. Environmental Pollution, 2019, 251: 689-698. doi: 10.1016/j.envpol.2019.05.026
    [28]
    LI E K, HORN N, AJUWON K M. Mechanisms of deoxynivalenol-induced endocytosis and degradation of tight junction proteins in jejunal IPEC-J2 cells involve selective activation of the MAPK pathways[J]. Archives of Toxicology, 2021, 95(6): 2065-2079. doi: 10.1007/s00204-021-03044-w
    [29]
    YU Y H, LAI Y H, HSIAO F S H, et al. Effects of deoxynivalenol and mycotoxin adsorbent agents on mitogen-activated protein kinase signaling pathways and inflammation-associated gene expression in porcine intestinal epithelial cells[J]. Toxins, 2021, 13(5): 301. doi: 10.3390/toxins13050301.
    [30]
    ZHANG H, DENG X W, ZHOU C, et al. Deoxynivalenol induces inflammation in IPEC-J2 cells by activating P38 mapk and Erk1/2[J]. Toxins, 2020, 12(3): 180. doi: 10.3390/toxins12030180.
    [31]
    WANG X C, ZHANG Y Y, ZHAO J, et al. Deoxynivalenol induces inflammatory injury in IPEC-J2 cells via NF-κB signaling pathway[J]. Toxins, 2019, 11(12): 733. doi: 10.3390/toxins11120733.
    [32]
    WANG X C, ZHANG Y F, CAO L, et al. Deoxynivalenol induces intestinal damage and inflammatory response through the nuclear factor-κB signaling pathway in piglets[J]. Toxins, 2019, 11(11): 663. doi: 10.3390/toxins11110663.
    [33]
    GE L, LIU D D, MAO X R, et al. Low dose of deoxynivalenol aggravates intestinal inflammation and barrier dysfunction induced by enterotoxigenic Escherichia coli infection through activating macroautophagy/NLRP3 inflammasomes[J]. Journal of Agricultural and Food Chemistry, 2022, 70(9): 3009-3022. doi: 10.1021/acs.jafc.1c07834
    [34]
    LIU D D, WANG Q, HE W M, et al. Two-way immune effects of deoxynivalenol in weaned piglets and porcine alveolar macrophages: Due mainly to its exposure dosage[J]. Chemosphere, 2020, 249: 126464. doi: 10.1016/j.chemosphere.2020.126464.
    [35]
    JI J, ZHU P, CUI F C, et al. The disorder metabolic profiling in kidney and spleen of mice induced by mycotoxins deoxynivalenol through gas chromatography mass spectrometry[J]. Chemosphere, 2017, 180: 267-274. doi: 10.1016/j.chemosphere.2017.03.129
    [36]
    REN Z H, GUO C Y, HE H Y, et al. Effects of deoxynivalenol on mitochondrial dynamics and autophagy in pig spleen lymphocytes[J]. Food and Chemical Toxicology, 2020, 140: 111357. doi: 10.1016/j.fct.2020.111357.
    [37]
    WANG X C, CHEN X F, CAO L, et al. Mechanism of deoxynivalenol-induced neurotoxicity in weaned piglets is linked to lipid peroxidation, dampened neurotransmitter levels, and interference with calcium signaling[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110382. doi: 10.1016/j.ecoenv.2020.110382.
    [38]
    WANG X C, CHU X Y, CAO L, et al. The role and regulatory mechanism of autophagy in hippocampal nerve cells of piglet damaged by deoxynivalenol[J]. Toxicology in Vitro, 2020, 66: 104837. doi: 10.1016/j.tiv.2020.104837.
    [39]
    KOWALSKA K, KOZIEŁ M J, HABROWSKA-GóRCZYŃSKA D E, et al. Deoxynivalenol induces apoptosis and autophagy in human prostate epithelial cells via PI3K/Akt signaling pathway[J]. Archives of Toxicology, 2022, 96(1): 231-241. doi: 10.1007/s00204-021-03176-z
    [40]
    CAO L, JIANG Y J, ZHU L, et al. Deoxynivalenol induces caspase-8-mediated apoptosis through the mitochondrial pathway in hippocampal nerve cells of piglet[J]. Toxins, 2021, 13(2): 73. doi: 10.3390/toxins13020073.
    [41]
    WANG X C, FAN M X, CHU X Y, et al. Deoxynivalenol induces toxicity and apoptosis in piglet hippocampal nerve cells via the MAPK signaling pathway[J]. Toxicon, 2018, 155: 1-8. doi: 10.1016/j.toxicon.2018.09.006
    [42]
    YANG J H, WANG J H, GUO W B, et al. Toxic effects and possible mechanisms of deoxynivalenol exposure on sperm and testicular damage in BALB/c mice[J]. Journal of Agricultural and Food Chemistry, 2019, 67(8): 2289-2295. doi: 10.1021/acs.jafc.8b04783
    [43]
    YU M, WEI Z Y, XU Z H, et al. Oxidative damage and Nrf2 translocation induced by toxicities of deoxynivalenol on the placental and embryo on gestation day 12.5 d and 18.5 d[J]. Toxins, 2018, 10(9): 370. doi: 10.3390/toxins10090370.
    [44]
    VIGNAL C, DJOUINA M, PICHAVANT M, et al. Chronic ingestion of deoxynivalenol at human dietary levels impairs intestinal homeostasis and gut microbiota in mice[J]. Archives of Toxicology, 2018, 92(7): 2327-2338. doi: 10.1007/s00204-018-2228-6
    [45]
    MARCHESI J R, ADAMS D H, FAVA F, et al. The gut microbiota and host health: A new clinical frontier[J]. Gut, 2016, 65(2): 330-339. doi: 10.1136/gutjnl-2015-309990
    [46]
    HE X L, ZENG Q, PUTHIYAKUNNON S, et al. Lactobacillus rhamnosus GG supernatant enhance neonatal resistance to systemic Escherichia coli K1 infection by accelerating development of intestinal defense[J]. Scientific Reports, 2017, 7: 43305. doi: 10.1038/srep43305.
    [47]
    REN C C, DOKTER-FOKKENS J, FIGUEROA LOZANO S, et al. Lactic acid bacteria may impact intestinal barrier function by modulating goblet cells[J]. Molecular Nutrition & Food Research, 2018, 62(6): e1700572. doi: 10.1002/mnfr.201700572.
    [48]
    GARCíA G R, PAYROS D, PINTON P, et al. Intestinal toxicity of deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants[J]. Archives of Toxicology, 2017, 92(2): 983-993.
    [49]
    BAI Y S, MA K D, LI J B, et al. Deoxynivalenol exposure induces liver damage in mice: Inflammation and immune responses, oxidative stress, and protective effects of Lactobacillus rhamnosus GG[J]. Food and Chemical Toxicology, 2021, 156: 112514. doi: 10.1016/j.fct.2021.112514.
    [50]
    MA K D, BAI Y S, LI J B, et al. Lactobacillus rhamnosus GG ameliorates deoxynivalenol-induced kidney oxidative damage and mitochondrial injury in weaned piglets[J]. Food & Function, 2022, 13(7): 3905-3916.
    [51]
    WU S R, LIU Y L, DUAN Y L, et al. Intestinal toxicity of deoxynivalenol is limited by supplementation with Lactobacillus plantarum JM113 and consequentially altered gut microbiota in broiler chickens[J]. Journal of Animal Science and Biotechnology, 2018, 9: 74. doi: 10.1186/s40104-018-0286-5.
    [52]
    MAIDANA L G, GEREZ J, HOHMANN M N S, et al. Lactobacillus plantarum metabolites reduce deoxynivalenol toxicity on jejunal explants of piglets[J]. Toxicon, 2021, 203: 12-21. doi: 10.1016/j.toxicon.2021.09.023
    [53]
    LI X Y, GUO Y P, ZHAO L H, et al. Protective effects of Devosia sp. ANSB714 on growth performance, immunity function, antioxidant capacity and tissue residues in growing-finishing pigs fed with deoxynivalenol contaminated diets[J]. Food and Chemical Toxicology, 2018, 121: 246-251. doi: 10.1016/j.fct.2018.09.007
    [54]
    QIN T, LIU X P, LUO Y, et al. Characterization of polysaccharides isolated from Hericium erinaceus and their protective effects on the DON-induced oxidative stress[J]. International Journal of Biological Macromolecules, 2020, 152: 1265-1273. doi: 10.1016/j.ijbiomac.2019.10.223
    [55]
    RAJPUT S A, LIANG S J, WANG X Q, et al. Lycopene protects intestinal epithelium from deoxynivalenol-induced oxidative damage via regulating Keap1/Nrf2 signaling[J]. Antioxidants, 2021, 10(9): 1493. doi: 10.3390/antiox10091493.
    [56]
    AL-SAEEDI F J. Mangiferin protect oxidative stress against deoxynivalenol induced damages through Nrf2 signalling pathways in endothelial cells[J]. Clinical and Experimental Pharmacology & Physiology, 2021, 48(3): 389-400.
    [57]
    YANG J, ZHU C, YE J L, et al. Protection of porcine intestinal-epithelial cells from deoxynivalenol-induced damage by resveratrol via the Nrf2 signaling pathway[J]. Journal of Agricultural and Food Chemistry, 2019, 67(6): 1726-1735. doi: 10.1021/acs.jafc.8b03662
    [58]
    ZHANG J, WANG J M, FANG H T, et al. Pterostilbene inhibits deoxynivalenol-induced oxidative stress and inflammatory response in bovine mammary epithelial cells[J]. Toxicon, 2021, 189: 10-18. doi: 10.1016/j.toxicon.2020.11.002
    [59]
    WAN M L Y, TURNER P C, CO V A, et al. Schisandrin A protects intestinal epithelial cells from deoxynivalenol-induced cytotoxicity, oxidative damage and inflammation[J]. Scientific Reports, 2019, 9: 19173. doi: 10.1038/s41598-019-55821-4.
    [60]
    WANG X J, LI L, ZHANG G Y. Impact of deoxynivalenol and kaempferol on expression of tight junction proteins at different stages of Caco-2 cell proliferation and differentiation[J]. RSC Advances, 2019, 9(59): 34607-34616. doi: 10.1039/C9RA06222J
    [61]
    XU X X, CHANG J, WANG P, et al. Effect of chlorogenic acid on alleviating inflammation and apoptosis of IPEC-J2 cells induced by deoxyniyalenol[J]. Ecotoxicology and Environmental Safety, 2020, 205: 111376. doi: 10.1016/j.ecoenv.2020.111376.
    [62]
    TANG M, YUAN D X, LIAO P. Berberine improves intestinal barrier function and reduces inflammation, immunosuppression, and oxidative stress by regulating the NF-κB/MAPK signaling pathway in deoxynivalenol-challenged piglets[J]. Environmental Pollution, 2021, 289: 117865. doi: 10.1016/j.envpol.2021.117865.
    [63]
    LIAO P, LI Y H, LI M J, et al. Baicalin alleviates deoxynivalenol-induced intestinal inflammation and oxidative stress damage by inhibiting NF-κB and increasing mTOR signaling pathways in piglets[J]. Food and Chemical Toxicology, 2020, 140: 111326. doi: 10.1016/j.fct.2020.111326.
    [64]
    WANG X M, ZUO Z C, ZHAO C P, et al. Protective role of selenium in the activities of antioxidant enzymes in piglet splenic lymphocytes exposed to deoxynivalenol[J]. Environmental Toxicology and Pharmacology, 2016, 47: 53-61. doi: 10.1016/j.etap.2016.09.003
    [65]
    SHIEH P, HSU S S, LIANG W Z. Mechanisms underlying protective effects of vitamin E against mycotoxin deoxynivalenol-induced oxidative stress and its related cytotoxicity in primary human brain endothelial cells[J]. Environmental Toxicology, 2021, 36(7): 1375-1388. doi: 10.1002/tox.23133
    [66]
    LIAO S M, LIU G, TAN B, et al. Fullerene C60 protects against intestinal injury from deoxynivalenol toxicity by improving antioxidant capacity[J]. Life, 2021, 11(6): 491. doi: 10.3390/life11060491.
    [67]
    ZHOU J Y, LIN H L, QIN Y C, et al. L-carnosine protects against deoxynivalenol-induced oxidative stress in intestinal stem cells by regulating the Keap1/Nrf2 signaling pathway[J]. Molecular Nutrition & Food Research, 2021, 65(17): e2100406. doi: 10.1002/mnfr.202100406.
    [68]
    WANG S, ZHANG C, YANG J C, et al. Sodium butyrate protects the intestinal barrier by modulating intestinal host defense peptide expression and gut microbiota after a challenge with deoxynivalenol in weaned piglets[J]. Journal of Agricultural and Food Chemistry, 2020, 68(15): 4515-4527. doi: 10.1021/acs.jafc.0c00791
    [69]
    XIAO K, LIU C C, QIN Q, et al. EPA and DHA attenuate deoxynivalenol-induced intestinal porcine epithelial cell injury and protect barrier function integrity by inhibiting necroptosis signaling pathway[J]. FASEB Journal, 2020, 34(2): 2483-2496. doi: 10.1096/fj.201902298R
    [70]
    XUE R F, LI S H, ZOU H J, et al. Melatonin alleviates deoxynivalenol-induced apoptosis of human granulosa cells by reducing mutually accentuated FOXO1 and ER stress[J]. Biology of Reproduction, 2021, 105(2): 554-566. doi: 10.1093/biolre/ioab084
    [71]
    SOBROVA P, ADAM V, VASATKOVA A, et al. Deoxynivalenol and its toxicity[J]. Interdiscip Toxicol, 2010, 3(3): 94-99.
    [72]
    KABAK B, DOBSON A D W, VAR I. Strategies to prevent mycotoxin contamination of food and animal feed: A review[J]. Critical Reviews in Food Science and Nutrition, 2006, 46(8): 593-619. doi: 10.1080/10408390500436185
    [73]
    XU H W, WANG L Z, SUN J D, et al. Microbial detoxification of mycotoxins in food and feed[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(18): 4951-4969. doi: 10.1080/10408398.2021.1879730
    [74]
    ERIKSEN G S, PETTERSSON H, LUNDH T. Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites[J]. Food and Chemical Toxicology, 2004, 42(4): 619-624. doi: 10.1016/j.fct.2003.11.006
    [75]
    FUCHS E, BINDER E M, HEIDLER D, et al. Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797[J]. Food Additives and Contaminants, 2002, 19(4): 379-386. doi: 10.1080/02652030110091154
    [76]
    LI F C, WANG J Q, HUANG L B, et al. Effects of adding Clostridium sp. WJ06 on intestinal morphology and microbial diversity of growing pigs fed with natural deoxynivalenol contaminated wheat[J]. Toxins, 2017, 9(12): 383. doi: 10.3390/toxins9120383.
    [77]
    LI X Z, ZHU C, DE LANGE C F M, et al. Efficacy of detoxification of deoxynivalenol-contaminated corn by Bacillus sp. LS100 in reducing the adverse effects of the mycotoxin on swine growth performance[J]. Food Additives & Contaminants: Part A, 2011, 28(7): 894-901.
    [78]
    GAO X J, MU P Q, WEN J K, et al. Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9[J]. Food and Chemical Toxicology, 2018, 112: 310-319. doi: 10.1016/j.fct.2017.12.066
    [79]
    GAO X J, MU P Q, ZHU X H, et al. Dual function of a novel bacterium, Slackia sp. D-G6: Detoxifying deoxynivalenol and producing the natural estrogen analogue, equol[J]. Toxins, 2020, 12(2): 85. doi: 10.3390/toxins12020085.
    [80]
    HE W J, SHI M M, YANG P, et al. Novel soil bacterium strain Desulfitobacterium sp. PGC-3-9 detoxifies trichothecene mycotoxins in wheat via de-epoxidation under aerobic and anaerobic conditions[J]. Toxins, 2020, 12(6): 363. doi: 10.3390/toxins12060363.
    [81]
    SHIMA J, TAKASE S, TAKAHASHI Y, et al. Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture[J]. Applied and Environmental Microbiology, 1997, 63(10): 3825-3830. doi: 10.1128/aem.63.10.3825-3830.1997
    [82]
    ZHANG J, QIN X J, GUO Y P, et al. Enzymatic degradation of deoxynivalenol by a novel bacterium, Pelagibacterium halotolerans ANSP101[J]. Food and Chemical Toxicology, 2020, 140: 111276. doi: 10.1016/j.fct.2020.111276.
    [83]
    QIN X J, ZHANG J, LIU Y R, et al. A quinoprotein dehydrogenase from Pelagibacterium halotolerans ANSP101 oxidizes deoxynivalenol to 3-keto-deoxynivalenol[J]. Food Control, 2022, 136: 108834. doi: 10.1016/j.foodcont.2022.108834.
    [84]
    唐语谦, 潘药银, 刘晨迪, 等. 脱氧雪腐镰刀菌烯醇的生物转化及其隐蔽型毒素的形成研究进展[J]. 食品科学, 2020, 41(19): 281-288. doi: 10.7506/spkx1002-6630-20190908-104
    [85]
    HE J W, HASSAN Y I, PERILLA N, et al. Bacterial epimerization as a route for deoxynivalenol detoxification: The influence of growth and environmental conditions[J]. Frontiers in Microbiology, 2016, 7: 572. doi: 10.3389/fmicb.2016.00572.
    [86]
    CARERE J, HASSAN Y I, LEPP D, et al. The enzymatic detoxification of the mycotoxin deoxynivalenol: Identification of DepA from the DON epimerization pathway[J]. Microbial Biotechnology, 2018, 11(6): 1106-1111. doi: 10.1111/1751-7915.12874
    [87]
    CARERE J, HASSAN Y I, LEPP D, et al. The identification of DepB: An enzyme responsible for the final detoxification step in the deoxynivalenol epimerization pathway in Devosia mutans 17-2-E-8[J]. Frontiers in Microbiology, 2018, 9: 1573. doi: 10.3389/fmicb.2018.01573.
    [88]
    HE W J, SHI M M, YANG P, et al. A quinone-dependent dehydrogenase and two NADPH-dependent aldo/keto reductases detoxify deoxynivalenol in wheat via epimerization in a Devosia strain[J]. Food Chemistry, 2020, 321: 126703. doi: 10.1016/j.foodchem.2020.126703.
    [89]
    HE W J, ZHANG L, YI S Y, et al. An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in a soil Sphingomonas strain[J]. Scientific Reports, 2017, 7(1): 9549. doi: 10.1038/s41598-017-08799-w.
    [90]
    WANG Y, ZHANG H, ZHAO C, et al. Isolation and characterization of a novel deoxynivalenol-transforming strain Paradevosia shaoguanensis DDB001 from wheat field soil[J]. Letters in Applied Microbiology, 2017, 65(5): 414-422. doi: 10.1111/lam.12790
    [91]
    IKUNAGA Y, SATO I, GROND S, et al. Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol[J]. Applied Microbiology and Biotechnology, 2011, 89(2): 419-427. doi: 10.1007/s00253-010-2857-z
    [92]
    WILSON N M, MCMASTER N, GANTULGA D, et al. Modification of the mycotoxin deoxynivalenol using microorganisms isolated from environmental samples[J]. Toxins, 2017, 9(4): 141. doi: 10.3390/toxins9040141.
    [93]
    ZHANG H H, ZHANG H, QIN X, et al. Biodegradation of deoxynivalenol by Nocardioides sp. ZHH-013: 3-keto-deoxynivalenol and 3-epi-deoxynivalenol as intermediate products[J]. Frontiers in Microbiology, 2021, 12: 658421. doi: 10.3389/fmicb.2021.658421.
  • Cited by

    Periodical cited type(2)

    1. 吕永东. 基于机器深度学习的小麦条播机双变量施肥控制方法. 中国农机装备. 2025(05): 108-111 .
    2. 郑金江. 基于VOSviewer无公害栽培技术的多维分析——发展、应用与新的挑战. 绿色科技. 2024(05): 161-167 .

    Other cited types(0)

Catalog

    Article views (148) PDF downloads (483) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return