Citation: | REN Wenchuang, WANG Xin, ZHANG Yahui, et al. Morphological characterization and genetic mapping of shrunken endosperm mutant sh2021 in maize[J]. Journal of South China Agricultural University, 2023, 44(5): 750-759. DOI: 10.7671/j.issn.1001-411X.202207041 |
To analyze the phenotypic characteristic of maize shrunk endosperm mutant and fine mapping of related genes, and lay a foundation for further understanding molecular mechanism of maize kernel development.
The spontaneous shrunk endosperm mutant shank2021(sh2021) was isolated from maize inbred line B73. Morphological and cytological characteristics were observed. A segregating population was developed, and the bulked segregant analysis (BSA) was used for preliminary gene mapping. The recombinant plants were screened for further narrowing the mapping interval. Finally the candidate genes controlling grain defect traits were speculated by transcriptome sequencing combined with gene function annotation analysis.
Compared with wild type, sh2021 displayed sunken and shrunken kernels, darker color, irregular grain arrangement, and lower 100-grain weight. The scanning electron microscope observation revealed that sh2021 had smaller endosperm cells and starch granules, and the starch granules were varied in size. The genetic analysis results indicated that sh2021 was caused by a single recessive gene mutation. The BSA indicated that the target gene was located on a 13.25 Mb fragment at the end of chromosome 3. By further expanding the segregating population and screening recombinant plants, the target gene was narrowed down to an interval of 529.60 kb between markers ID5 and ID9. Transcriptome sequencing and gene annotation of sh2021 and wild type indicated that Zm00001d044119, Zm00001d044120, Zm00001d044122, Zm00001d044129, and Zm00001d044142 mighted be candidate genes controlling maize kernel development.
The identification of sh2021 provides abundant experimental materials for the study of kernel development, and lays a foundation for further map-based cloning and functional analysis of sh2021.
[1] |
NEUFFER M G, SHERIDAN W F. Defective kernel mutants of maize: I: Genetic and lethality studies[J]. Genetics, 1980, 95(4): 929-944. doi: 10.1093/genetics/95.4.929
|
[2] |
BRUNELLE D C, CLARK J K, SHERIDAN W F. Genetic screening for EMS-induced maize embryo-specific mutants altered in embryo morphogenesis[J]. G3-Genes Genomics Genetics, 2017, 7(11): 3559-3570.
|
[3] |
WU Y R, MESSING J. Proteome balancing of the maize seed for higher nutritional value[J]. Frontiers in Plant Science, 2014, 5: 240.
|
[4] |
SCHMIDT R J, BURR F A, AUKERMAN M J, et al. Maize regulatory gene opaque-2 encodes a protein with a “leucine-zipper” motif that binds to zein DNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(1): 46-50. doi: 10.1073/pnas.87.1.46
|
[5] |
AZEVEDO R A, LEA P J, DAMERVAL C, et al. Regulation of lysine metabolism and endosperm protein synthesis by the opaque-5 and opaque-7 maize mutations[J]. Journal of Agricultural and Food Chemistry, 2004, 52(15): 4865-4871. doi: 10.1021/jf035422h
|
[6] |
MYERS A M, JAMES M G, LIN Q. Maize opaque5 encodes monogalactosyldiacylglycerol synthase and specifically affects galactolipids necessary for amyloplast and chloroplast function[J]. Plant Cell, 2011, 23(6): 2331-2347. doi: 10.1105/tpc.111.087205
|
[7] |
FU S N, SCANLON M J. Clonal mosaic analysis of empty pericarp2 reveals nonredundant functions of the duplicated heat shock factor binding proteins during maize shoot development[J]. Genetics, 2004, 167(3): 1381-1394. doi: 10.1534/genetics.104.026575
|
[8] |
CHETTOOR A M, YI G, GOMEZ E, et al. A putative plant organelle RNA recognition protein gene is essential for maize kernel development[J]. Journal of Integrative Plant Biology, 2015, 57(3): 236-246. doi: 10.1111/jipb.12234
|
[9] |
YANG Y Z, DING S, WANG Y, et al. Small kernel2 encodes a glutaminase in vitamin B6 biosynthesis essential for maize seed development[J]. Plant Physiology, 2017, 174(2): 1127-1138. doi: 10.1104/pp.16.01295
|
[10] |
薛慧, 张国治, 吕飞杰, 等. 抗性淀粉测定方法的研究[J]. 河南工业大学学报(自然科学版), 2012, 33(4): 57-60. doi: 10.16433/j.cnki.issn1673-2383.2012.04.017
|
[11] |
DICKINSON D B, PREISS J. Presence of ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize endosperm[J]. Plant Physiology, 1969, 44(7): 1058-1062. doi: 10.1104/pp.44.7.1058
|
[12] |
周瑞颐, 青芸, 李道杨, 等. 玉米ZmBT1研究进展[J]. 分子植物育种, 2020, 18(20): 6702-6706. doi: 10.13271/j.mpb.018.006702
|
[13] |
MAGALIE C, PIERRE C, SYLVIE M, et al. Transcriptional and metabolic adjustments in ADP-glucose pyrophosphorylase-deficient bt2 maize kernels[J]. Plant Physiology, 2008, 146(4): 1553-1570. doi: 10.1104/pp.107.112698
|
[14] |
宋欣冉, 胡书婷, 张凯, 等. 玉米籽粒突变体dek101的表型分析和精细定位[J]. 作物学报, 2020, 46(12): 1831-1838.
|
[15] |
石慧敏, 蒋成功, 王红武, 等. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
|
[16] |
HE Y H, WANG J G, QI W W, et al. Maize Dek15 encodes the cohesin-loading complex subunit SCC4 and is essential for chromosome segregation and kernel development[J]. The Plant Cell, 2019, 31(2): 465-485. doi: 10.1105/tpc.18.00921
|
[17] |
WANG G F, WANG F, WANG G, et al. Opaque1 encodes a myosin XI motor protein that is required for endoplasmic reticulum motility and protein body formation in maize endosperm[J]. The Plant Cell, 2012, 24(8): 3447-3462. doi: 10.1105/tpc.112.101360
|
[18] |
WANG G, QI W W, WU Q, et al. Identification and characterization of maize floury4 as a novel semidominant opaque mutant that disrupts protein body assembly[J]. Plant Physiology, 2014, 165(2): 582-594. doi: 10.1104/pp.114.238030
|
[19] |
GILLIKIN J W, ZHANG F, COLEMAN C E, et al. A defective signal peptide tethers the floury-2 zein to the endoplasmic reticulum membrane[J]. Plant Physiology, 1997, 114(1): 345-352. doi: 10.1104/pp.114.1.345
|
[20] |
KIM C S, GIBBON B C, GILLIKIN J W, et al. The maize Mucronate mutation is a deletion in the 16-kDa γ-zein gene that induces the unfolded protein response1[J]. The Plant Journal, 2006, 48(3): 440-451. doi: 10.1111/j.1365-313X.2006.02884.x
|
[21] |
KUSHWAHA H R, SINGH A K, SOPORY S K, et al. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L. ) Heynh and Oryza sativa L. reveals their developmental and stress regulation[J]. BMC Genomics, 2009, 10: 200. doi: 10.1186/1471-2164-10-200
|
[22] |
王立成. 玉米抗旱高通量FOX文库的构建与验证[D]. 杨凌: 西北农林科技大学, 2019.
|
[23] |
崔会婷, 蒋旭, 张铁军, 等. 植物CYP450家族研究进展[J]. 中国草地学报, 2020, 42(5): 173-180. doi: 10.16742/j.zgcdxb.20190182
|
[24] |
刘薇, 张彦威, 李伟, 等. 大豆细胞色素P450基因GmCYP78A69的克隆和生物信息学分析[J]. 分子植物育种, 2020, 18(14): 4523-4531.
|
[25] |
CHEN X, LIU W, HUANG X, et al. Arg-type dihydroflavonol 4-reductase genes from the fern Dryopteris erythrosora play important roles in the biosynthesis of anthocyanins[J]. PLoS One, 2020, 15(5): e232090. doi: 10.1371/journal.pone.0232090.
|
[26] |
GU Z Y, CHEN H, YANG R N, et al. Identification of DFR as a promoter of anthocyanin accumulation in poinsettia (Euphorbia pulcherrima, Willd. ex Klotzsch) bracts under short-day conditions[J]. Scientia Horticulturae, 2018, 236: 158-165. doi: 10.1016/j.scienta.2018.03.032
|
[27] |
DEIKMAN J, HAMMER P E. Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana[J]. Plant Physiology, 1995, 108(1): 47-57. doi: 10.1104/pp.108.1.47
|
[28] |
BAI M Y, FAN M, OH E, et al. A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis[J]. The Plant Cell, 2012, 24(12): 4917-4929.
|
[29] |
刘浩. 转录因子ABP7在玉米籽粒发育过程中的功能及其分子机理分析[D]. 北京: 中国农业大学, 2017.
|