SONG Yu, GUO Wenfeng, LI Xiaoqiong. Effects of clonal integration on growth and photosynthesis of invasive weed Alternanthera philoxeroides and native A. sessilis[J]. Journal of South China Agricultural University, 2023, 44(4): 531-538. DOI: 10.7671/j.issn.1001-411X.202207037
    Citation: SONG Yu, GUO Wenfeng, LI Xiaoqiong. Effects of clonal integration on growth and photosynthesis of invasive weed Alternanthera philoxeroides and native A. sessilis[J]. Journal of South China Agricultural University, 2023, 44(4): 531-538. DOI: 10.7671/j.issn.1001-411X.202207037

    Effects of clonal integration on growth and photosynthesis of invasive weed Alternanthera philoxeroides and native A. sessilis

    More Information
    • Received Date: July 19, 2022
    • Available Online: September 03, 2023
    • Published Date: May 09, 2023
    • Objective 

      The alien invasive plant Alternanthera philoxeroides is often sympatric with native congener A. sessilis, but occupies an ecological advantage over A. sessilis in China. This study aimed to explore the relationship between clonal integration and the strong competitiveness of A. philoxeroides.

      Method 

      In a common garden experiment, the stolon connection between the apical and the basal ramets of A. philoxeroides and A. sessilis were left intact (clonal integration) or disconnected (without clonal integration), and the growth, photosynthesis, and biomass distribution of the apical ramets, the basal ramets, and the whole fragments of the two plants under different clonal integration treatments were examined to compare the clonal integration abilities of the two plants.

      Result 

      The stem length of the apical ramets, the number of leaves of the basal ramets as well as the leaf number and the stem length of the whole fragment of A. philoxeroides all significantly increased under clonal integration treatment. Moreover, the number of fine roots, total roots, and some photosynthetic indicators (such as light compensation point, stomatal conductivity, etc.) of A. philoxeroides all significantly increased under clonal integration treatment. Similarly, the aboveground/belowground biomass, the total biomass, the number of coarse/fine roots, and total number of roots of the apical ramets, the basal ramets, and the whole fragment of A. sessilis also significantly increased under clonal integration treatment. However, the aboveground/belowground biomass, the total biomass, and some photosynthetic indicators (such as net photosynthetic rate, transpiration rate, and stomatal conductance) of the apical ramets, the basal ramets, and the whole fragment of A. philoxeroides were significantly higher than those of A. sessilis under clonal integration treatment.

      Conclusion 

      Both A. philoxeroides and A. sessilis can partly benefit from clonal integration, and A. philoxeroides has a stronger clonal integration ability than A. sessilis. A. philoxeroides might occupy the spatial niche through clonal integration, thus forming competitive advantage in natural habitats.

    • [1]
      QIN H R, GUO W F, LI X Q. Density-dependent interactions between the nematode Meloidogyne incognita and the biological control agent Agasicles hygrophila on invasive Alternanthera philoxeroides and its native congener Alternantera sessilis[J]. BioControl, 2021, 66(6): 837-848. doi: 10.1007/s10526-021-10113-7
      [2]
      LIU J, DONG M, MIAO S L, et al. Invasive alien plants in China: Role of clonality and geographical origin[J]. Biological Invasions, 2006, 8(7): 1461-1470. doi: 10.1007/s10530-005-5838-x
      [3]
      YOU W H, YU D, LIU C H, et al. Clonal integration facilitates invasiveness of the alien aquatic plant Myriophyllum aquaticum L. under heterogeneous water availability[J]. Hydrobiologia, 2013, 718(1): 27-39. doi: 10.1007/s10750-013-1596-4
      [4]
      YOU W H, YU D, XIE D, et al. The invasive plant Alternanthera philoxeroides benefits from clonal integration in response to defoliation[J]. Flora, 2014, 209(11): 666-673. doi: 10.1016/j.flora.2014.09.008
      [5]
      WANG Y J, MULLER-SCHARER H, VAN KLEUNEN M, et al. Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives[J]. New Phytologist, 2017, 216(4): 1072-1078. doi: 10.1111/nph.14820
      [6]
      SONG Y B, YU F H, KESER L H, et al. United we stand, divided we fall: A meta-analysis of experiments on clonal integration and its relationship to invasiveness[J]. Oecologia, 2013, 171(2): 317-327. doi: 10.1007/s00442-012-2430-9
      [7]
      WANG P, LI H, PANG X Y, et al. Clonal integration increases tolerance of a phalanx clonal plant to defoliation[J]. Science of the Total Environment, 2017, 593: 236-241.
      [8]
      姜星星, 董必成, 罗芳丽, 等. 光强对比度对大米草克隆整合作用的影响[J]. 应用生态学报, 2014, 25(10): 2826-2832. doi: 10.13287/j.1001-9332.2014.0151
      [9]
      吕晓倩, 韩翠敏, 奚道国, 等. 克隆整合有利于喜旱莲子草入侵本地植物种群[J]. 江西农业大学学报, 2019, 41(6): 1093-1102. doi: 10.13836/j.jjau.2019128
      [10]
      HUANG Q Q, LI X X, HUANG F F, et al. Nutrient addition increases the capacity for division of labor and the benefits of clonal integration in an invasive plant[J]. Science of the Total Environment, 2018, 643: 1232-1238. doi: 10.1016/j.scitotenv.2018.06.294
      [11]
      WEI Q, LI Q, JIN Y, et al. Effects of clonal integration on photochemical activity and growth performance of stoloniferous herb Centella asiatica suffering from heterogeneous water availability[J]. Flora, 2019, 256: 36-42. doi: 10.1016/j.flora.2019.05.001
      [12]
      李晓霞, 沈奕德, 范志伟, 等. 异质性光照生境下克隆整合对外来入侵植物薇甘菊生长的影响[J]. 生态学杂志, 2018, 37(4): 974-980. doi: 10.13292/j.1000-4890.201804.039
      [13]
      王秋丽. 水分同质与异质对两种蔊菜克隆整合的影响[D]. 沈阳: 沈阳农业大学, 2020.
      [14]
      WANG P, ALPERT P, YU F H. Clonal integration affects allocation in the perennial herb Alternanthera philoxeroides in N-limited homogeneous environments[J]. Folia Geobotanica, 2017, 52(3/4): 303-315.
      [15]
      YOU W H, FANG L X, XI D G, et al. Difference in capacity of clonal integration between terrestrial and aquatic Alternanthera philoxeroides in response to defoliation: Implications for biological control[J]. Hydrobiologia, 2018, 817(1): 319-328. doi: 10.1007/s10750-017-3418-6
      [16]
      YU H H, FAN S F. Differences in physiological traits and resistances of Alternanthera philoxeroides after herbivory by generalists and specialists[J]. Aquatic Ecology, 2018, 52(4): 323-332. doi: 10.1007/s10452-018-9666-3
      [17]
      PORTELA R, DONG B C, YU F H, et al. Effects of physiological integration on defense strategies against herbivory by the clonal plant Alternanthera philoxeroides[J]. Journal of Plant Ecology, 2019, 12(4): 662-672. doi: 10.1093/jpe/rtz004
      [18]
      DONG B C, ZHANG L M, LI K Y, et al. Effects of clonal integration and nitrogen supply on responses of a clonal plant to short-term herbivory[J]. Journal of Plant Ecology, 2019, 12(4): 624-635. doi: 10.1093/jpe/rty057
      [19]
      DONG B C, ALPERT P, ZHANG Q, et al. Clonal integration in homogeneous environments increases performance of Alternanthera philoxeroides[J]. Oecologia, 2015, 179(2): 393-403. doi: 10.1007/s00442-015-3338-y
      [20]
      HE M Y, CHEN J W, DING J Q, et al. Differing interactions between an introduced beetle and a resident root nematode mediated by an invasive plant and its native congener[J]. Plant Ecology, 2018, 219(7): 803-812. doi: 10.1007/s11258-018-0835-1
      [21]
      LIANG J F, YUAN W Y, GAO J Q, et al. Soil resource heterogeneity competitively favors an invasive clonal plant over a native one[J]. Oecologia, 2020, 193(1): 155-165. doi: 10.1007/s00442-020-04660-6
      [22]
      陈燕丽, 陈中义. 陆生型空心莲子草根的生长动态研究[J]. 江西农业学报, 2011, 23(2): 111-114. doi: 10.3969/j.issn.1001-8581.2011.02.035
      [23]
      THORNLEY J H M. Mathematical models in plant physiology[M]. London: Academic Press, 1976: 86-110.
      [24]
      YOU W H, FAN S F, YU D, et al. An invasive clonal plant benefits from clonal integration more than a co-occurring native plant in nutrient-patchy and competitive environments[J]. PLoS One, 2014, 9(5): e97246. doi: 10.1371/journal.pone.0097246
      [25]
      WANG N, YU F H, LI P X, et al. Clonal integration affects growth, photosynthetic efficiency and biomass allocation, but not the competitive ability, of the alien invasive Alternanthera philoxeroides under severe stress[J]. Annals of Botany, 2008, 101(5): 671-678. doi: 10.1093/aob/mcn005
      [26]
      ROILOA S R, RODRÍGUEZ-ECHEVERRÍA S, FREITAS H, et al. Developmentally-programmed division of labour in the clonal invader Carpobrotus edulis[J]. Biological Invasions, 2013, 15(9): 1895-1905. doi: 10.1007/s10530-013-0417-z
      [27]
      胡安安. 克隆劳动分工对入侵植物喜旱莲子草及其近缘种的影响[D]. 镇江: 江苏大学, 2020.
      [28]
      BUCKLEY T N, MOTT K A. Modelling stomatal conductance in response to environmental factors[J]. Plant, Cell and Environment, 2013, 36(9): 1691-1699. doi: 10.1111/pce.12140
      [29]
      赵楠, 朱高峰, 张扬, 等. 干旱绿洲区葡萄冠层上下方叶片气孔导度特征[J]. 兰州大学学报(自然科学版), 2021, 57(4): 510-517.
      [30]
      高旭, 郭文锋, 项瑶, 等. 桉树枝瘿姬小蜂虫瘿对桉树光合生理的影响[J]. 中国森林病虫, 2019, 38(5): 18-23. doi: 10.3969/j.issn.1671-0886.2019.05.004
      [31]
      黄思倩. 空心莲子草在光照与养分异质性生境下的功能特化[D]. 雅安: 四川农业大学, 2014.
    • Related Articles

      [1]LIU Huan, DENG Shuzhen, ZHAO Xiaofeng, CAO Fengqin, LU Yongyue. Structure and photoreception mechanism of the compound eye of Bactrocera dorsalis Hendel[J]. Journal of South China Agricultural University, 2017, 38(2): 75-80. DOI: 10.7671/j.issn.1001-411X.2017.02.014
      [2]ZHAO Haiyan, LU Yongyue, ZENG Ling, LIANG Guangwen. Scanning Electron Microscopic Observation on Sensilla of the Antennal, Ovipositor and Abdomen in Female of Pachycrepoideus vindemmiae[J]. Journal of South China Agricultural University, 2013, 34(4): 499-503. DOI: 10.7671/j.issn.1001-411X.2013.04.010
      [3]CHEN Li, CHEN Kewei, LIANG Guangwen. Antennal Sensilla of Female Telenomus remus Observed with Scanning Electron Microscopy[J]. Journal of South China Agricultural University, 2013, 34(1): 72-75. DOI: 10.7671/j.issn.1001-411X.2013.01.015
      [4]JIAN Mei-ling, ZHANG Lai-li, MAO Run-qian. Studies on the Antennal Sensilla of Chilades pandava by Scanning Electron Microscopy[J]. Journal of South China Agricultural University, 2011, 32(2): 52-54. DOI: 10.7671/j.issn.1001-411X.2011.02.012
      [5]LIU Gui-qing,TIAN Ming-yi. Scanning Electron Microscopic Observation of Carabus prodigus Antennae and Their Electroantennographic Responses[J]. Journal of South China Agricultural University, 2008, 29(2): 50-55. DOI: 10.7671/j.issn.1001-411X.2008.02.012
      [6]HUANG Zhi-jun~1,TAN Bin-an~1,CHEN Xin-fang~2,YANG Bin-yao~2. The antennae microstructures of adults of Contarinia sp.under scanning electronic microscope[J]. Journal of South China Agricultural University, 2004, 25(2): 123-124. DOI: 10.7671/j.issn.1001-411X.2004.02.033
      [7]ZHU Hong liang 1,LIU Xiang dong 1,LU Yong gen 1,XU Shi xiong 2. Improved Method of PEG Embedding Section Being Used in Investigating Microtubules in Plant Embryo Sac[J]. Journal of South China Agricultural University, 2001, 22(4): 52-54. DOI: 10.7671/j.issn.1001-411X.2001.04.015
      [8]Chen Yuanling ,Jian Yuyu, Xu Xuebin. STUDIES ON MORPHOLOGICAL CHARACTERIZATION OF SOMATIC EMBRYOGENESIS OF Ind ica RICE(Oryza sativa L.)[J]. Journal of South China Agricultural University, 1994, (1): 78-84.
    • Cited by

      Periodical cited type(0)

      Other cited types(3)

    Catalog

      Article views PDF downloads Cited by(3)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return