Citation: | ZHU Xiaojie, WANG Xianjie, YANG Mingkang, et al. Heterologous overexpression of MtATG7 gene from Medicago truncatula promotes resistance to carbon and nitrogen starvation in Arabidopsis thaliana[J]. Journal of South China Agricultural University, 2023, 44(5): 810-817. DOI: 10.7671/j.issn.1001-411X.202207033 |
Eukaryotes use autophagy pathway to recycle nutrients by degrading misfolded proteins or damaged organelles. This study aims to analyze the function of Medicago autophagy genes in plant response to nutritional stress, and provide a reference for the breeding and improvement of Medicago.
We focused on the ATG7 gene (Autophagy-related gene 7), which serves as the rate-limiting gene in the autophagy pathway, and investigated the similarities of ATG7 amino acid sequences among different plant species. The overexpression vector of Medicago truncatula MtATG7 gene was transformed to Arabidopsis thaliana, to generate the heterologous overexpression lines 35S::MtATG7 and the complementary lines atg7/35S::MtATG7. The plant resistance to stress and autophagic activity were analyzed.
Under carbon starvation, atg7/35S::MtATG7 rescued the phenotype of premature leaf senescence of atg7 mutant, and the survival rates of 35S::MtATG7 and atg7/35S::MtATG7 plants were significantly higher than that of wildtype. GFP-ATG8e cleavage assay suggested that atg7/35S::MtATG7 restored the deficiency of autophagic degradation activity in atg7 mutants. Under nitrogen starvation, overexpression of MtATG7 also slowed down the senescence rate of A. thaliana leaves.
Heterologous overexpression of MtATG7 can enhance the resistance of A. thaliana under carbon and nitrogen starvation, which provides a theoretical basis for further improving Medicago agronomic traits by using MtATG7 gene.
[1] |
LIU Y, BASSHAM D C. Autophagy: Pathways for self-eating in plant cells[J]. Annual Review of Plant Biology, 2012, 63: 215-237. doi: 10.1146/annurev-arplant-042811-105441
|
[2] |
MARSHALL R S, VIERSTRA R D. Autophagy: The master of bulk and selective recycling[J]. Annual Review of Plant Biology, 2018, 69: 173-208. doi: 10.1146/annurev-arplant-042817-040606
|
[3] |
MARION J, LE BARS R, BESSE L, et al. Multiscale and multimodal approaches to study autophagy in model plants[J]. Cells, 2018, 7(1): 5. doi: 10.3390/cells7010005.
|
[4] |
张鸿哲, 朱璐, 左泽远, 等. 拟南芥ATGs在发育和非生物胁迫中的表达特征和功能分析[J]. 基因组学与应用生物学, 2020, 39(6): 2671-2682. doi: 10.13417/j.gab.039.002671
|
[5] |
CHEN Q, SOULAY F, SAUDEMONT B, et al. Overexpression of ATG8 in Arabidopsis stimulates autophagic activity and increases nitrogen remobilization efficiency and grain filling[J]. Plant & Cell Physiology, 2019, 60(2): 343-352.
|
[6] |
ZHEN X, XU F, ZHANG W, et al. Overexpression of rice gene OsATG8b confers tolerance to nitrogen starvation and increases yield and nitrogen use efficiency (NUE) in Arabidopsis[J]. PLoS One, 2019, 14(9): e0223011. doi: 10.1371/journal.pone.0223011
|
[7] |
甄晓溪, 刘浩然, 李鑫, 等. 异源过表达OsATG8b基因提高转基因拟南芥的氮/碳胁迫耐受性和产量[J]. 植物学报, 2019, 54(1): 23-36.
|
[8] |
SUN X, JIA X, HUO L, et al. MdATG18a overexpression improves tolerance to nitrogen deficiency and regulates anthocyanin accumulation through increased autophagy in transgenic apple[J]. Plant, Cell & Environment, 2018, 41(2): 469-480.
|
[9] |
SUN X, WANG P, JIA X, et al. Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple[J]. Plant Biotechnology Journal, 2018, 16(2): 545-557. doi: 10.1111/pbi.12794
|
[10] |
JIA X, MAO K, WANG P, et al. Overexpression of MdATG8i improves water use efficiency in transgenic apple by modulating photosynthesis, osmotic balance, and autophagic activity under moderate water deficit[J]. Horticulture Research, 2021, 8: 81. doi: 10.1038/s41438-021-00521-2.
|
[11] |
LI B, LIU G, WANG Y, et al. Overexpression of banana ATG8f modulates drought stress resistance in Arabidopsis[J]. Biomolecules, 2019, 9(12): 814. doi: 10.3390/biom9120814.
|
[12] |
HUO L, GUO Z, JIA X, et al. Increased autophagic activity in roots caused by overexpression of the autophagy-related gene MdATG10 in apple enhances salt tolerance[J]. Plant Science, 2020, 294: 110444. doi: 10.1016/j.plantsci.2020.110444.
|
[13] |
LI Y, LIU C, SUN X, et al. Overexpression of MdATG18a enhances alkaline tolerance and GABA shunt in apple through increased autophagy under alkaline conditions[J]. Tree Physiology, 2020, 40(11): 1509-1519. doi: 10.1093/treephys/tpaa075
|
[14] |
HUO L, SUN X, GUO Z, et al. MdATG18a overexpression improves basal thermotolerance in transgenic apple by decreasing damage to chloroplasts[J]. Horticulture Research, 2020, 7: 21. doi: 10.1038/s41438-020-0243-2.
|
[15] |
SUN X, HUO L, JIA X, et al. Overexpression of MdATG18a in apple improves resistance to Diplocarpon mali infection by enhancing antioxidant activity and salicylic acid levels[J]. Horticulture Research, 2018, 5: 57. doi: 10.1038/s41438-018-0059-5.
|
[16] |
MININA E A, MOSCHOU P N, VETUKURI R R, et al. Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness[J]. Journal of Experimental Botany, 2018, 69(6): 1415-1432. doi: 10.1093/jxb/ery010
|
[17] |
DOELLING J H, WALKER J M, FRIEDMAN E M, et al. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2002, 277(36): 33105-33114. doi: 10.1074/jbc.M204630200
|
[18] |
PECRIX Y, STATON S E, SALLET E, et al. Whole-genome landscape of Medicago truncatula symbiotic genes[J]. Nature Plants, 2018, 4(12): 1017-1025. doi: 10.1038/s41477-018-0286-7
|
[19] |
CHEN L, LIAO B, QI H, et al. Autophagy contributes to regulation of the hypoxia response during submergence in Arabidopsis thaliana[J]. Autophagy, 2015, 11(12): 2233-2246. doi: 10.1080/15548627.2015.1112483
|
[20] |
CLOUGH S J, BENT A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant Journal, 1998, 16(6): 735-743. doi: 10.1046/j.1365-313x.1998.00343.x
|
[21] |
WANG Y, YU B, ZHAO J, et al. Autophagy contributes to leaf starch degradation[J]. The Plant Cell, 2013, 25(4): 1383-1399. doi: 10.1105/tpc.112.108993
|
[22] |
WADA S, ISHIDA H, IZUMI M, et al. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves[J]. Plant Physiology, 2009, 149(2): 885-893. doi: 10.1104/pp.108.130013
|
[23] |
LI F, CHUNG T, PENNINGTON J G, et al. Autophagic recycling plays a central role in maize nitrogen remobilization[J]. The Plant Cell, 2015, 27(5): 1389-1408. doi: 10.1105/tpc.15.00158
|
[24] |
YOSHIMOTO K, TAKANO Y, SAKAI Y. Autophagy in plants and phytopathogens[J]. FEBS Letters, 2010, 584(7): 1350-1358. doi: 10.1016/j.febslet.2010.01.007
|
[25] |
REN C, LIU J, GONG Q. Functions of autophagy in plant carbon and nitrogen metabolism[J]. Frontiers in Plant Science, 2014, 5: 301. doi: 10.3389/fpls.2014.00301.
|
[26] |
KURUSU T, KOYANO T, HANAMATA S, et al. OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development[J]. Autophagy, 2014, 10(5): 878-888. doi: 10.4161/auto.28279
|
[27] |
ZHAO P, ZHOU X M, ZHAO L L, et al. Autophagy-mediated compartmental cytoplasmic deletion is essential for tobacco pollen germination and male fertility[J]. Autophagy, 2020, 16(12): 2180-2192. doi: 10.1080/15548627.2020.1719722
|
1. |
李汶荟,王林栋,施娜娜. 山东莱州湾海湾扇贝养殖期水质变化调查及最佳养殖密度筛选. 中国动物保健. 2025(02): 192-193 .
![]() |