Citation: | PENG Guoqing, LIU Minglong, ZHOU Hai, et al. Research progress and challenge of environment-sensitive genic male sterility in rice[J]. Journal of South China Agricultural University, 2022, 43(6): 60-68. DOI: 10.7671/j.issn.1001-411X.202207021 |
Two-line hybrid rice based on environment-sensitive genic male sterility plays an important role in ensuring food security in our country. At present, dozens of environment-sensitive male sterility genes have been found in rice, and some of them have been cloned and their regulatory mechanisms have been studied in detail. In this paper, we reviewed the application and molecular mechanisms of RNA metabolism, signal transduction, transcriptional regulation, pollen wall synthesis and amino acid metabolism of environment-sensitive genic male sterility in rice. Finally, challenges and corresponding countermeasures of environment-sensitive genic male sterility research in rice are also analyzed and proposed.
[1] |
袁隆平. 发展超级杂交水稻保障国家粮食安全[J]. 杂交水稻, 2015, 30(3): 1-2.
|
[2] |
刘杰, 黄学辉. 作物杂种优势研究现状与展望[J]. 中国科学: 生命科学, 2021, 51(10): 1396-1404.
|
[3] |
商连光, 高振宇, 钱前. 作物杂种优势遗传基础的研究进展[J]. 植物学报, 2017, 52(1): 10-18. doi: 10.11983/CBB16187
|
[4] |
韩亚丽, 林春晶, 赵丽梅, 等. 作物杂种优势预测研究进展[J]. 东北农业科学, 2020, 45(3): 30-34.
|
[5] |
LONGIN C F H, MÜHLEISEN J, MAURER H P, et al. Hybrid breeding in autogamous cereals[J]. Theoretical and Applied Genetics, 2012, 125(6): 1087-1096. doi: 10.1007/s00122-012-1967-7
|
[6] |
袁隆平. 杂交水稻发展的战略[J]. 杂交水稻, 2018, 33(3): 1-2. doi: 10.16267/j.cnki.1005-3956.20180920.246
|
[7] |
石明松. 晚粳自然两用系选育及应用初报[J]. 湖北农业科学, 1981, 7: 1-3.
|
[8] |
牟同敏. 中国两系法杂交水稻研究进展和展望[J]. 科学通报, 2016, 61(35): 3761-3769.
|
[9] |
张志刚, 颜育民, 王桂元, 等. 水稻光温敏核不育系双8S的选育与应用[J]. 杂交水稻, 2013, 28(3): 6-9. doi: 10.16267/j.cnki.1005-3956.2013.03.005
|
[10] |
刘金波, 徐大勇, 潘启民, 等. 水稻光温敏核质互作型不育系的选育[J]. 中国稻米, 2011, 17(1): 13-16. doi: 10.3969/j.issn.1006-8082.2011.01.004
|
[11] |
CHEN H, ZHANG Z, NI E, et al. HMS1 interacts with HMS1I to regulate very-long-chain fatty acid biosynthesis and the humidity-sensitive genic male sterility in rice (Oryza sativa)[J]. New Phytologist, 2020, 225(5): 2077-2093. doi: 10.1111/nph.16288
|
[12] |
DING J, LU Q, OUYANG Y, et al. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2654-2659. doi: 10.1073/pnas.1121374109
|
[13] |
石明松. 对光照长度敏感的隐性雄性不育水稻的发现与初步研究[J]. 中国农业科学, 1995, 2: 44-48.
|
[14] |
邓华凤, 舒福北, 袁定阳. 安农S-1的研究及其利用概况[J]. 杂交水稻, 1999, 14(3): 1-3.
|
[15] |
CHEN R, ZHAO X, SHAO Z, et al. Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility[J]. Plant Cell, 2007, 19(3): 847-861. doi: 10.1105/tpc.106.044123
|
[16] |
ZHOU H, ZHOU M, YANG Y, et al. RNase ZS1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice[J]. Nature Communications, 2014, 5: 4884. doi: 10.1038/ncomms5884.
|
[17] |
YU J, HAN J, KIM Y J, et al. Two rice receptor-like kinases maintain male fertility under changing temperatures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(46): 12327-12332. doi: 10.1073/pnas.1705189114
|
[18] |
QI Y B, LIU Q L, ZHANG L, et al. Fine mapping and candidate gene analysis of the novel thermo-sensitive genic male sterility tms9-1 gene in rice[J]. Theoretical and Applied Genetics, 2014, 127(5): 1173-1182. doi: 10.1007/s00122-014-2289-8
|
[19] |
ZHANG H, XU C, HE Y, et al. Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(1): 76-81. doi: 10.1073/pnas.1213041110
|
[20] |
WANG D, LI J, SUN L, et al. Two rice MYB transcription factors maintain male fertility in response to photoperiod by modulating sugar partitioning[J]. New Phytologist, 2021, 231(4): 1612-1629. doi: 10.1111/nph.17512
|
[21] |
FAN Y, YANG J, MATHIONI S M, et al. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(52): 15144-15149. doi: 10.1073/pnas.1619159114
|
[22] |
DING J, SHEN J, MAO H, et al. RNA-directed DNA methylation is involved in regulating photoperiod-sensitive male sterility in rice[J]. Molecular Plant, 2012, 5(6): 1210-1216. doi: 10.1093/mp/sss095
|
[23] |
ZHOU H, LIU Q, LI J, et al. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA[J]. Cell Research, 2012, 22(4): 649-660. doi: 10.1038/cr.2012.28
|
[24] |
ZHANG Y F, LI Y L, ZHONG X, et al. Mutation of GMC oxidoreductase leads to thermosensitive genic male sterility in rice and Arabidopsis[J/OL]. Plant Biotechnology Journal, 2022. [2022-07-11]. doi: 10.1111/pbi.13886.
|
[25] |
XUE Z, XU X, ZHOU Y, et al. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice[J]. Nature Communications, 2018, 9: 604. doi: 10.1038/s41467-018-03048-8.
|
[26] |
NI E, DENG L, CHEN H, et al. OsCER1 regulates humidity-sensitive genic male sterility through very-long-chain (VLC) alkane metabolism of tryphine in rice[J]. Functional Plant Biology, 2021, 48(5): 461-468. doi: 10.1071/FP20168
|
[27] |
YANG H, LI Y, CAO Y, et al. Nitrogen nutrition contributes to plant fertility by affecting meiosis initiation[J]. Nature Communications, 2022, 13(1): 485. doi: 10.1038/s41467-022-28173-3.
|
[28] |
王志, 吴凡, 唐益文, 等. 水稻新资源籼型两用核不育系绵9S的选育[J]. 西南农业学报, 1999, 12(4): 11-14. doi: 10.3969/j.issn.1001-4829.1999.04.003
|
[29] |
黎世龄, 熊国新, 高一枝. 水稻短光敏雄性核不育性的发现与利用[J]. 杂交水稻, 2006, 21(1): 10-13. doi: 10.3969/j.issn.1005-3956.2006.01.003
|
[30] |
PENG H, ZHANG Z, WU B, et al. Molecular mapping of two reverse photoperiod-sensitive genic male sterility genes (rpms1 and rpms2) in rice (Oryza sativa L. )[J]. Theoretical and Applied Genetics, 2008, 118(1): 77-83. doi: 10.1007/s00122-008-0877-1
|
[31] |
JIA J, ZHANG D, LI C, et al. Molecular mapping of the reverse thermo-sensitive genic male-sterile gene (rtms1) in rice[J]. Theoretical and Applied Genetics, 2001, 103(4): 607-612. doi: 10.1007/PL00002916
|
[32] |
NI J, WANG D, NI D, et al. Characterization and fine mapping of RTMS10, a semi-dominant reverse thermo-sensitive genic male sterile locus in rice[J]. Journal of Integrative Agriculture, 2022, 21(2): 316-325. doi: 10.1016/S2095-3119(20)63563-8
|
[33] |
FANG C, LI L, HE R, et al. Identification of S23 causing both interspecific hybrid male sterility and environment-conditioned male sterility in rice[J]. Rice, 2019, 12: 10. doi: 10.1186/s12284-019-0271-4.
|
[34] |
REDDY O, SIDDIQ E, SARMA N, et al. Genetic analysis of temperature-sensitive male sterilty in rice[J]. Theoretical and Applied Genetics, 2000, 100(5): 794-801. doi: 10.1007/s001220051354
|
[35] |
孙宗修, 熊振民, 闵绍楷, 等. 温度敏感型雄性不育水稻的鉴定[J]. 中国水稻科学, 1989, 3(2): 49-55. doi: 10.3321/j.issn:1001-7216.1989.02.001
|
[36] |
YAMAGUCHI Y, HIRASAWA H, MINAMI M, et al. Linkage analysis of thermosensitive genic male sterility gene, tms-2 in rice (Oryza sativa L. )[J]. Japanese Journal of Breeding, 1997, 47(4): 371-373.
|
[37] |
SUBUDHI P, BORKAKATI R, VIRMANI S, et al. Molecular mapping of a thermosensitive genetic male sterility gene in rice using bulked segregant analysis[J]. Genome, 1997, 40(2): 188-194. doi: 10.1139/g97-027
|
[38] |
DONG N, SUBUDHI P, LUONG P, et al. Molecular mapping of a rice gene conditioning thermosensitive genic male sterility using AFLP, RFLP and SSR techniques[J]. Theoretical and Applied Genetics, 2000, 100(5): 727-734. doi: 10.1007/s001220051345
|
[39] |
LEE D S, CHEN L J, SUH H S. Genetic characterization and fine mapping of a novel thermo-sensitive genic male-sterile gene tms6 in rice (Oryza sativa L. )[J]. Theoretical and Applied Genetics, 2005, 111(7): 1271-1277. doi: 10.1007/s00122-005-0044-x
|
[40] |
LIU X, LI X, ZHANG X, et al. Genetic analysis and mapping of a thermosensitive genic male sterility gene, tms6(t), in rice (Oryza sativa L.)[J]. Genome, 2010, 53(2): 119-124. doi: 10.1139/G09-092
|
[41] |
邹丹妮. 水稻野栽远源杂交来源的温敏核雄性不育基因tms7的精细定位[J]. 海口: 海南大学, 2011.
|
[42] |
HUSSAIN A J, ALI J, SIDDIQ E A, et al. Mapping of tms8 gene for temperature-sensitive genic male sterility (TGMS) in rice (Oryza sativa L. )[J]. Plant Breeding, 2012, 131(1): 42-47. doi: 10.1111/j.1439-0523.2011.01897.x
|
[43] |
ZHANG H, LIANG W, YANG X, et al. Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development[J]. Plant Cell, 2010, 22(3): 672-689. doi: 10.1105/tpc.109.073668
|
[44] |
WU L, JING X, ZHANG B, et al. A natural allele of OsMS1 responds to temperature changes and confers thermosensitive genic male sterility[J]. Nature Communications, 2022, 13(1): 2055. doi: 10.1038/s41467-022-29648-z.
|
[45] |
FAN Y, ZHANG Q. Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice[J]. Plant Reproduction, 2018, 31(1): 3-14.
|
[46] |
ZHANG Q, SHEN B, DAI X, et al. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(18): 8675-8679. doi: 10.1073/pnas.91.18.8675
|
[47] |
KUNZMANN A, BRENNICKE A, MARCHFELDER A. 5' end maturation and RNA editing have to precede tRNA 3' processing in plant mitochondria[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(1): 108-113. doi: 10.1073/pnas.95.1.108
|
[48] |
PENG G, HE Y, WANG M, et al. The structural characteristics and the substrate recognition properties of RNase ZS1[J]. Plant Physiology and Biochemistry, 2021, 158: 83-90. doi: 10.1016/j.plaphy.2020.12.001
|
[49] |
ZHU L, CHENG H, PENG G, et al. Ubiquitinome profiling reveals the landscape of ubiquitination regulation in rice young panicles[J]. Genomics Proteomics & Bioinformatics, 2020, 18(3): 305-320.
|
[50] |
LIU W, SUN J, LI J, et al. Reproductive tissue-specific translatome of a rice thermo-sensitive genic male sterile line[J]. Journal of Genetics and Genomics, 2022, 49(7): 624-635.
|
[51] |
LI J, ZHANG H, SI X, et al. Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene[J]. Journal of Genetics and Genomics, 2017, 44(9): 465-468. doi: 10.1016/j.jgg.2017.02.002
|
[52] |
ZHOU H, HE M, LI J, et al. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system[J]. Scientific Reports, 2016, 6: 37395. doi: 10.1038/srep37395.
|
[53] |
NI E, ZHOU L, LI J, et al. OsCER1 plays a pivotal role in very-long-chain alkane biosynthesis and affects plastid development and programmed cell death of tapetum in rice (Oryza sativa L. )[J]. Frontiers in Plant Science, 2018, 9: 1217. doi: 10.3389/fpls.2018.01217.
|
[54] |
黄蓉芬. 水稻光温敏核不育系利用中存在的问题与对策[J]. 江西农业, 2018(10): 35. doi: 10.3969/j.issn.1674-1479.2018.10.028
|
[55] |
LI Q L, ZHANG D B, CHEN M J, et al. Development of japonica photo-sensitive genic male sterile rice lines by editing Carbon Starved Anther using CRISPR/Cas9[J]. Journal of Genetics and Genomics, 2016, 43(6): 415-419. doi: 10.1016/j.jgg.2016.04.011
|
[56] |
LEI D, TANG W, XIE Z, et al. Solutions to insecurity problems in seed production of two-line hybrid rice[J]. Agricultural Science & Technology, 2013, 15(7): 1160-1166.
|
[57] |
雷东阳, 唐文帮, 解志坚, 等. 两系法杂交水稻制种不安全问题的解决途径[J]. 作物学报, 2013, 39(9): 1569-1575.
|
[58] |
柏斌, 吴俊, 庄文, 等. 育性敏感期低温对水稻光温敏不育系生理指标的影响[J]. 华北农学报, 2015, 30(3): 98-104. doi: 10.7668/hbnxb.2015.03.018
|
[59] |
蔡星星, 张盛, 曾亚军, 等. 水稻两系不育系广占63-4S育性转换温度的提纯[J]. 湖北农业科学, 2015, 54(21): 5216-5217. doi: 10.14088/j.cnki.issn0439-8114.2015.21.004
|
[60] |
陈立云, 肖应辉. 水稻光温敏核不育机理设想及光温敏核不育系选育策略[J]. 中国水稻科学, 2010, 24(2): 103-107. doi: 10.3969/j.issn.1001-7216.2010.02.01
|
[61] |
何强, 庞震宇, 孙平勇, 等. 低温处理水稻光温敏核不育系筛选核心单株的效果研究[J]. 杂交水稻, 2016, 31(1): 18-20. doi: 10.16267/j.cnki.1005-3956.201601006
|
1. |
王亚琴. 食品中致病微生物的检测方法研究. 食品安全导刊. 2025(11): 131-133 .
![]() |