HONG Mei, WANG Xuyang. Current advances on post-translational processing and related essential domains of drug transporters[J]. Journal of South China Agricultural University, 2022, 43(6): 160-172. DOI: 10.7671/j.issn.1001-411X.202206051
    Citation: HONG Mei, WANG Xuyang. Current advances on post-translational processing and related essential domains of drug transporters[J]. Journal of South China Agricultural University, 2022, 43(6): 160-172. DOI: 10.7671/j.issn.1001-411X.202206051

    Current advances on post-translational processing and related essential domains of drug transporters

    More Information
    • Received Date: June 12, 2022
    • Available Online: May 17, 2023
    • Drug transporters mediate different types of drugs with diverse structures across cell membranes, affecting concentration of drugs in various tissues and organs and the systemic exposure. They are not only key factors that determine drug efficacy, but also important sites for drug-drug interaction. The major human drug transporters belong to the ATP-binding cassette (ABC) superfamily or the solute carrier superfamily, which mediate the efflux and absorption of drugs, respectively. These two kinds of transporters coordinate with each other and work in concert to determine intracellular drug concentrations. As membrane proteins, drug transporters need to go through a series of precise and complicated post-translational modifications before arriving at the site of action. Additionally, the human body needs to respond promptly during the intake of drugs and post-translational regulations hence become the manner of choice in such a process; The function of transporters may be affected by the abnormality of various post-translational regulatory mechanisms under pathological conditions as well. Therefore, a comprehensive understanding of the post-translational processing of drug transporters is of great importance for investigating the molecular mechanism(s) of drug transport and clarifying the inter-individual variability of drug response caused by genetic polymorphisms. The present article reviewed current reports on post-translational processing and modification of drug transporters, and summarized essential motifs and/or sites in transporters that play key roles in these regulatory processes.

    • [1]
      SUN D, JIANG H, ZENG S. Drug design based on the function of membrane transporters in drug absorption, distribution, metabolism and excretion[J]. Journal of Chinese Pharmaceutical Sciences, 2012, 21(6): 544-552.
      [2]
      GIACOMINI K M, HUANG S M, TWEEDIE D J, et al. Membrane transporters in drug development[J]. Nature Reviews Drug Discovery, 2010, 9(3): 215-236. doi: 10.1038/nrd3028
      [3]
      XU D, YOU G. Loops and layers of post-translational modifications of drug transporters[J]. Advanced Drug Delivery Reviews, 2017, 116: 37-44. doi: 10.1016/j.addr.2016.05.003
      [4]
      DAHL S G, SYLTE I, RAVNA A W. Structures and models of transporter proteins[J]. Journal of Pharmacology and Experimental Therapeutics, 2004, 309(3): 853-860. doi: 10.1124/jpet.103.059972
      [5]
      AMAWI H, SIM H M, TIWARI A K, et al. ABC transporter-mediated multidrug-resistant cancer[J]. Advances in Experimental Medicine and Biology, 2019, 1141: 549-580.
      [6]
      FRELET A, KLEIN M. Insight in eukaryotic ABC transporter function by mutation analysis[J]. FEBS Letters, 2006, 580(4): 1064-1084. doi: 10.1016/j.febslet.2006.01.024
      [7]
      HE S M, LI R, KANWAR J R, et al. Structural and functional properties of human multidrug resistance protein 1 (MRP1/ABCC1)[J]. Current Medicinal Chemistry, 2011, 18(3): 439-481. doi: 10.2174/092986711794839197
      [8]
      ALTENBERG G A. Structure of multidrug-resistance proteins of the ATP-binding cassette (ABC) superfamily[J]. Current Medicinal Chemistry Anticancer Agents, 2004, 4(1): 53-62. doi: 10.2174/1568011043482160
      [9]
      CROWLEY E, O'MARA M L, REYNOLDS C, et al. Transmembrane helix 12 modulates progression of the ATP catalytic cycle in ABCB1[J]. Biochemistry, 2009, 48(26): 6249-6258. doi: 10.1021/bi900373x
      [10]
      CHUFAN E E, SIM H M, AMBUDKAR S V. Molecular basis of the polyspecificity of P-glycoprotein (ABCB1): Recent biochemical and structural studies[J]. Advances in Cancer Research, 2015, 125: 71-96.
      [11]
      WARD A B, SZEWCZYK P, GRIMARD V, et al. Structures of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(33): 13386-13391. doi: 10.1073/pnas.1309275110
      [12]
      LI J Z, JAIMESE K F, ALLER S G. Refined structures of mouse P-glycoprotein[J]. Protein Science, 2014, 23(1): 34-46.
      [13]
      HONG M. Biochemical studies on the structure-function relationship of major drug transporters in the ATP-binding cassette family and solute carrier family[J]. Advanced Drug Delivery Reviews, 2017, 116: 3-20. doi: 10.1016/j.addr.2016.06.003
      [14]
      NI Z, BIKADI Z, CAI X, et al. Transmembrane helices 1 and 6 of the human breast cancer resistance protein (BCRP/ABCG2): Identification of polar residues important for drug transport[J], American Journal of Physiology-Cell Physiology, 2010, 299(5): C1100-C1109.
      [15]
      CÉSAR-RAZQUIN A, SNIJDER B, FRAPPIER-BRINTON T, et al. A call for systematic research on solute carriers[J]. Cell, 2015, 162(3): 478-487. doi: 10.1016/j.cell.2015.07.022
      [16]
      SHITARA Y, MAEDA K, IKEJIRI K, et al. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: Their roles in hepatic clearance and intestinal absorption[J]. Biopharmaceutics & Drug Disposition, 2013, 34(1): 45-78.
      [17]
      ZAÏR Z M, ELORANTA J J, STIEGER B, et al. Pharmacogenetics of OATP (SLC21/SLCO), OAT and OCT (SLC22) and PEPT (SLC15) transporters in the intestine, liver and kidney[J]. Pharmacogenomics, 2008, 9(5): 597-624. doi: 10.2217/14622416.9.5.597
      [18]
      HONG M. Critical domains within the sequence of human organic anion transporting polypeptides[J]. Current Drug Metabolism, 2014, 15(3): 265-270. doi: 10.2174/1389200214666131229111118
      [19]
      MEIER-ABT F, MOKRAB Y, MIZUGUCHI K. Organic anion transporting polypeptides of the OATP/SLCO superfamily: Identification of new members in nonmammalian species, comparative modeling and a potential transport mode[J]. Journal of Membrane Biology, 2005, 208(3): 213-227.
      [20]
      ZHOU F, YOU G. Molecular insights into the structure-function relationship of organic anion transporters OATs[J]. Pharmaceutical Research, 2007, 24(1): 28-36. doi: 10.1007/s11095-006-9144-9
      [21]
      ROTH M, OBAIDAT A, HAGENBUCH B. OATPs, OATs and OCTs: The organic anion and cation transporters of the SLCO and SLC22A gene superfamilies[J]. British Journal of Pharmacology, 2012, 165(5): 1260-1287. doi: 10.1111/j.1476-5381.2011.01724.x
      [22]
      HONG M, TANAKA K, YOU G, et al. Determination of the external loops and the cellular orientation of the N- and the C-termini of the human organic anion transporter hOAT1[J]. Biochemical Journal, 2007, 401(2): 515-520. doi: 10.1042/BJ20061171
      [23]
      PERRY J L, DEMBLA-RAJPAL N, HALL L A, et al. A three-dimensional model of human organic anion transporter 1: Aromatic amino acids required for substrate transport[J]. Journal of Biological Chemistry, 2006, 281(49): 38071-38079. doi: 10.1074/jbc.M608834200
      [24]
      KOEPSELL H. The SLC22 family with transporters of organic cations, anions and zwitterions[J]. Molecular Aspects of Medicine, 2013, 34(2/3): 413-443. doi: 10.1016/j.mam.2012.10.010
      [25]
      INANO A, SAI Y, KATO Y, et al. Functional regions of organic cation/carnitine transporter OCTN2 (SLC22A5): Roles in carnitine recognition[J]. Drug Metabolism and Pharmacokinetics, 2004, 19(3): 180-189. doi: 10.2133/dmpk.19.180
      [26]
      LYONS J A, PARKER J L, SOLCAN N, et al. Structural basis for polyspecificity in the POT family of proton-coupled oligopeptide transporters[J]. EMBO Reports, 2014, 15(8): 886-893. doi: 10.15252/embr.201338403
      [27]
      BRANDSCH M. Drug transport via the intestinal peptide transporter PepT1[J]. Current Opinion in Pharmacology, 2013, 13(6): 881-887. doi: 10.1016/j.coph.2013.08.004
      [28]
      NEWSTEAD S. Molecular insights into proton coupled peptide transport in the PTR family of oligopeptide transporters[J]. Biochimica et Biophysica Acta - General Subjects, 2015, 1850(3): 488-499. doi: 10.1016/j.bbagen.2014.05.011
      [29]
      KNÜTTER I, HARTTRODT B, THEIS S, et al. Analysis of the transport properties of side chain modified dipeptides at the mammalian peptide transporter PEPT1[J]. European Journal of Pharmaceutical Sciences, 2004, 21(1): 61-67. doi: 10.1016/S0928-0987(03)00141-6
      [30]
      KUSAKIZAKO T, MIYAUCHI H, ISHITANI R, et al. Structural biology of the multidrug and toxic compound extrusion superfamily transporters[J]. Biochimica et Biophysica Acta-Biomembranes, 2020, 1862(12): 183154. doi: 10.1016/j.bbamem.2019.183154.
      [31]
      ZHANG X, HE X, BARKE J, et al. Twelve transmembrane helices form the functional core of mammalian MATE1 (multidrug and toxin extruder 1) protein[J]. Journal of Biological Chemistry, 2012, 287(33): 27971-27982. doi: 10.1074/jbc.M112.386979
      [32]
      OTSUKA M, MATSUMOTO T, MORIMOTO R, et al. A human transporter protein that mediates the final excretion step for toxic organic cations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(50): 17923-17928. doi: 10.1073/pnas.0506483102
      [33]
      CONNETT G J. Lumacaftor-ivacaftor in the treatment of cystic fibrosis: Design, development and place in therapy[J]. Drug Design Development and Therapy, 2019, 13: 2405-2412. doi: 10.2147/DDDT.S153719
      [34]
      TOBY T K, FORNELLI L, KELLEHER N L. Progress in top-down proteomics and the analysis of proteoforms[J]. Annual Review of Analytical Chemistry, 2016, 9(1): 499-519. doi: 10.1146/annurev-anchem-071015-041550
      [35]
      KAZUHIRO K, KOHJI N, YOSHIKAZU S. Regulations of P-glycoprotein/ABCB1/MDR1 in human cancer cells[J]. New Journal of Science, 2014: 476974. doi: 10.1155/2014/476974.
      [36]
      STOLARCZYK E I, REILING C J, PICKIN K A, et al. Casein kinase 2a regulates multidrug resistance-associated protein 1 function via phosphorylation of Thr249[J]. Molecular Pharmacology, 2012, 282(3): 488-499.
      [37]
      XIE Y, XU K, LINN D E, et al. The 44-kDa pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells[J]. Journal of Biological Chemistry, 2008, 283(6): 3349-3356. doi: 10.1074/jbc.M707773200
      [38]
      ZHANG Q, HONG M, DUAN P, et al. Organic anion transporter OAT1 undergoes constitutive and protein kinase C regulated trafficking through a dynamin- and clathrin-dependent pathway[J]. Journal of Biological Chemistry, 2008, 283(47): 32570-32579. doi: 10.1074/jbc.M800298200
      [39]
      XU D, HUANG H, YOU G, et al. Serum- and glucocorticoid-inducible kinase sgk2 stimulates the transport activity of human organic anion transporters 1 by enhancing the stability of the transporter[J]. Insect Biochemistry and Molecular Biology, 2016, 7(1): 19-26.
      [40]
      SPROWL J A, ONG S S, GIBSON A A, et al. A phosphotyrosine switch regulates organic cation transporters[J]. Nature Communications, 2016, 7: 10880. doi: 10.1038/ncomms10880.
      [41]
      KÖCK K, KOENEN A, GIESE B, et al. Rapid modulation of the organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) function by protein kinase C-mediated internalization[J]. Journal of Biological Chemistry, 2010, 285(15): 11336-11347.
      [42]
      ZHOU F, LEE A C, KRAFCZYK K, et al. Protein kinase C regulates the internalization and function of the human organic anion transporting polypeptide 1A2[J]. British Journal of Pharmacology, 2011, 162(6): 1380-1388. doi: 10.1111/j.1476-5381.2010.01144.x
      [43]
      HONG M, HONG W, NI C, et al. Protein kinase C affects the internalization and recycling of organic anion transporting polypeptide 1B1[J]. Biochimica et Biophysica Acta - Biomembranes, 2015, 1848(10): 2022-2030.
      [44]
      CHAN T, CHEUNG F, ZHENG J, et al. Casein kinase 2 is a novel regulator of the human organic anion transporting polypeptide 1A2 (OATP1A2) trafficking[J]. Molecular Pharmacology, 2016, 13(1): 144-154. doi: 10.1021/acs.molpharmaceut.5b00576
      [45]
      HAYDEN E R, CHEN M, PASQUARIELLO K Z, et al. Regulation of OATP1B1 function by tyrosine kinase-mediated phosphorylation[J]. Clinical Cancer Research, 2021, 27(15): 4301-4310. doi: 10.1158/1078-0432.CCR-21-0023
      [46]
      BOEHMER C, PALMADA M, KLAUS F, et al. The peptide transporter PEPT2 is targeted by the protein kinase SGK1 and the scaffold protein NHERF2[J]. Cellular Physiology and Biochemistry, 2008, 22(5/6): 705-714. doi: 10.1159/000185554
      [47]
      NIES A T, DAMME K, KRUCK S, et al. Structure and function of multidrug and toxin extrusion proteins (MATEs) and their relevance to drug therapy and personalized medicine[J]. Archives of Toxicology, 2016, 90(7): 1555-1584. doi: 10.1007/s00204-016-1728-5
      [48]
      KANTAUSKITE M, HUCKE A, REIKE M, et al. Rapid regulation of human multidrug and extrusion transporters hMATE1 and hMATE2K[J]. International Journal of Molecular Sciences, 2020, 21(14): 5157. doi: 10.3390/ijms21145157
      [49]
      YOU G, MORRIS M E. Drug transporters: Molecular characterization and role in drug disposition[M]. Hoboken: John Wiley & Sons, Inc., 2007: 517-533.
      [50]
      SCHINKEL A H, KEMP S, DOLLE M, et al. N-Glycosylation and deletion mutants of the human MDR1 P-glycoprotein[J]. Journal of Biological Chemistry, 1993, 268(10): 7474-7481. doi: 10.1016/S0021-9258(18)53199-9
      [51]
      NAKAGAWA H, WAKABAYASHI-NAKAO K, TAMURA A, et al. Disruption of N-linked glycosylation enhances ubiquitin-mediated proteasomal degradation of the human ATP-binding cassette transporter ABCG2[J]. FEBS Journal, 2009, 276(24): 7237-7252. doi: 10.1111/j.1742-4658.2009.07423.x
      [52]
      YAO J, HONG W, HONG M, et al. N-glycosylation dictates proper processing of organic anion transporting polypeptide 1B1[J]. PLoS One, 2012, 7: e52563. doi: 10.1371/journal.pone.0052563
      [53]
      TANAKA K, XU W, YOU G, et al. Role of glycosylation in the organic anion transporter OAT1[J]. Journal of Biological Chemistry, 2004, 79(15): 14961-14966.
      [54]
      ZHOU F, XU W, HONG M, et al. The role of N-linked glycosylation in protein folding, membrane targeting, and substrate binding of human organic anion transporter hOAT4[J]. Molecular Pharmacology, 2005, 67(3): 868-876. doi: 10.1124/mol.104.007583
      [55]
      FILIPPO C A, ARDON O, LONGO N. Glycosylation of the OCTN2 carnitine transporter: Study of natural mutations identified in patients with primary carnitine deficiency[J]. Biochimica et Biophysica Acta-Molecular Basis of Diseases, 2011, 1812(3): 312-320. doi: 10.1016/j.bbadis.2010.11.007
      [56]
      PICKART C M. Mechanisms underlying ubiquitination[J]. Annual Review of Biochemistry, 2001, 70: 503-533. doi: 10.1146/annurev.biochem.70.1.503
      [57]
      LI S, ZHANG Q, YOU G. Three ubiquitination sites of organic anion transporter-1 synergistically mediate protein kinase C-dependent endocytosis of the transporter[J]. Molecular Pharmacology, 2013, 84(1): 139-146. doi: 10.1124/mol.113.086769
      [58]
      XU J, PENG H, CHEN Q, et al. Oligomerization domain of the multidrug resistance-associated transporter ABCG2 and its dominant inhibitory activity[J]. Cancer Research, 2007, 67(9): 4373-4381. doi: 10.1158/0008-5472.CAN-06-3169
      [59]
      MO W, QI J, ZHANG J. Different roles of TM5, TM6, and ECL3 in the oligomerization and function of human ABCG2[J]. Biochemistry, 2012, 51(17): 3634-3641. doi: 10.1021/bi300301a
      [60]
      YANG Y, LIU Y, DONG Z, et al. Regulation of function by dimerization through the amino-terminal membrane-spanning domain of human ABCC1/MRP1[J]. Journal of Biological Chemistry, 2007, 282(12): 8821-8830. doi: 10.1074/jbc.M700152200
      [61]
      YANG Y, MO W, ZHANG J T. Role of transmembrane segment 5 and extracellular loop 3 in the homodimerization of human ABCC1[J]. Biochemistry, 2010, 49(51): 10854-10861. doi: 10.1021/bi101350x
      [62]
      HONG M, XU W, YOSHIDA T, et al. Human organic anion transporter hOAT1 forms homooligomers[J]. Journal of Biological Chemistry, 2005, 280(37): 32285-32290. doi: 10.1074/jbc.M501447200
      [63]
      DUAN P, LI S, YOU G. Transmembrane peptide as potent inhibitor of oligomerization and function of human organic anion transporter 1[J]. Molecular Pharmacology, 2011, 79(3): 569-574. doi: 10.1124/mol.110.070185
      [64]
      DUAN P, WU J, YOU G. Mutational analysis of the role of GXXXG motif in the function of human organic anion transporter 1 (hOAT1)[J]. International Journal of Biochemistry and Molecular Biology, 2011, 2(1): 1-7.
      [65]
      BRAST S, GRABNER A, SUCIC S, et al. The cysteines of the extracellular loop are crucial for trafficking of human organic cation transporter 2 to the plasma membrane and are involved in oligomerization[J]. The FASEB Journal, 2012, 26(3): 976-986. doi: 10.1096/fj.11-180679
      [66]
      NI C, YU X, HONG M, et al. Oligomerization study of human organic anion transporting polypeptide 1B1[J]. Molecular Pharmaceutics, 2017, 14(2): 359-367. doi: 10.1021/acs.molpharmaceut.6b00649
      [67]
      NI C, WANG X, CHEN J, et al. Leucine heptad motifs within transmembrane domains affect function and oligomerization of human organic anion transporting polypeptide 1B1[J]. Biochimica et Biophysica Acta-Biomembranes, 2021, 1863(4): 183554. doi: 10.1016/j.bbamem.2021.183554.
      [68]
      LIU X, FUENTES E J. Emerging themes in PDZ domain signaling: Structure, function, and inhibition[J]. International Review of Cell and Molecular Biology, 2019, 343: 129-218.
      [69]
      EMI Y, YASUDA Y, SAKAGUCHI M. ATP-binding cassette transporter isoform C2 localizes to the apical plasma membrane via interactions with scaffolding protein[J]. Journal of Cell Science, 2012, 149(2): 177-189.
      [70]
      KATO Y, YOSHIDA K, WATANABE C, et al. Screening of the interaction between xenobiotic transporters and PDZ proteins[J]. Pharmaceutical Research, 2004, 21(10): 1886-1894. doi: 10.1023/B:PHAM.0000045244.83999.43
      [71]
      FERREIRA C, HAGEN P, STERN M, et al. The scaffold protein PDZK1 modulates expression and function of the organic anion transporting polypeptide 2B1[J]. European Journal of Pharmaceutical Sciences, 2018, 120: 181-190. doi: 10.1016/j.ejps.2018.05.006
      [72]
      MIYAZAKI H, ANZAI N, EKARATANAWONG S, et al. Modulation of renal apical organic anion transporter 4 function by two PDZ domain-containing proteins[J]. Journal of the American Society of Nephrology, 2005, 16(12): 3498-3506. doi: 10.1681/ASN.2005030306
      [73]
      KATO Y, SAI Y, YOSHIDA K, et al. PDZK1 directly regulates the function of organic cation/carnitine transporter OCTN2[J]. Molecular Pharmacology, 2005, 67(3): 734-743. doi: 10.1124/mol.104.002212
      [74]
      NOSHIRO R, ANZAI N, SAKATA T, et al. The PDZ domain protein PDZK1 interacts with human peptide transporter PEPT2 and enhances its transport activity[J]. Kidney International, 2006, 70(2): 275-282. doi: 10.1038/sj.ki.5001522
      [75]
      LESLIE E M, LETOURNESU I J, DEELEY R G, et al. Functional and structural consequences of cysteine substitutions in the NH2 proximal region of the human multidrug resistance protein 1 (MRP1/ABCC1)[J]. Biochemistry, 2006, 42(18): 5214-5224.
      [76]
      CHUN S E, THAKKAR N, OH Y, et al. The N-terminal region of organic anion transporting polypeptide 1B3 (OATP1B3) plays an essential role in regulating its plasma membrane trafficking[J]. Biochemical Pharmacology, 2017, 131: 98-105. doi: 10.1016/j.bcp.2017.02.013
      [77]
      STOOPS E, CAPLAN M J. Trafficking to the apical and basolateral membranes in polarized epithelial cells[J]. Journal of the American Society of Nephrology, 2014, 25(7): 1375-1386. doi: 10.1681/ASN.2013080883
      [78]
      WANG X, LIANG Y, FANG Z, et al. The intracellular NPxY motif is critical in maintaining the function and expression of human organic anion transporting polypeptide 1B1[J]. Biochimica et Biophysica Acta-Biomembranes, 2019, 1861(6): 1189-1196. doi: 10.1016/j.bbamem.2019.04.001
      [79]
      WANG X, CHEN J, HONG M, et al. Amino-terminal region of human organic anion transporting polypeptide 1B1 dictates transporter stability and substrate interaction[J]. Toxicology and Applied Pharmacology, 2019, 378: 114642. doi: 10.1016/j.taap.2019.114642
      [80]
      BONIFACINO J S, TRAUB L M. Signals for sorting of transmembrane proteins to endosomes and lysosomes[J]. Annual Review of Biochemistry, 2003, 72: 395-447. doi: 10.1146/annurev.biochem.72.121801.161800
      [81]
      WESTLAKE C J, COLE S P, DEELEY R G. Role of the NH2-terminal membrane spanning domain of multidrug resistance protein 1/ABCC1 in protein processing and trafficking[J]. Molecular Biology of the Cell, 2005, 16(5): 2483-2492. doi: 10.1091/mbc.e04-12-1113
      [82]
      HONG M, LI S, YOU G, et al. Putative transmembrane domain 12 of the human organic anion transporter hOAT1 determines transporter stability and maturation efficiency[J]. Journal of Pharmacology and Experimental Therapeutics, 2010, 332(2): 650-658. doi: 10.1124/jpet.109.160515
      [83]
      ZHANG Q, WU J, PAN Z, et al. The role of dileucine in the expression and function of human organic anion transporter 1 (hOAT1)[J]. International Journal of Biochemistry and Molecular Biology, 2011, 2(1): 31-38.
      [84]
      BHULLAR K S, LAGARÓN N O, MCGOWAN E M, et al. Kinase-targeted cancer therapies: Progress, challenges and future directions[J]. Molecular Cancer, 2018, 17: 48. doi: 10.1186/s12943-018-0804-2.
      [85]
      MILLER M J, FOY K C, KAUMAYA P T. Cancer immunotherapy: Present status, future perspective, and a new paradigm of peptide immunotherapeutics[J]. Discovery Medicine, 2013, 15(82): 166-176.
      [86]
      YUAN J, DONG X, YAP J, et al. The MAPK and AMPK signalings: Interplay and implication in targeted cancer therapy[J]. Journal of Hematology & Oncologyl, 2020, 13(1): 113. doi: 10.1186/s13045-020-00949-4.
      [87]
      Center for drug evaluation and research. Guidance for industry clinical pharmacogenomics: Premarket evaluation in early-phase clinical studies and recommendations for labeling[S]. Silver Spring: Food and Drug Administration, 2013.
      [88]
      HEYES N, KAPOOR P, KERR I D. Polymorphisms of the multidrug pump ABCG2: A systematic review of their effect on protein expression, function, and drug pharmacokinetics[J]. Drug Metabolism and Disposition, 2018, 46(12): 1886-1899. doi: 10.1124/dmd.118.083030
      [89]
      ALAM K, CROWE A, WANG X, et al. Regulation of organic anion transporting polypeptides (OATP) 1B1- and OATP1B3-mediated transport: An updated review in the context of OATP-mediated drug-drug interactions[J]. International Journal of Molecular Sciences, 2018, 19(3): 855. doi: 10.3390/ijms19030855.
      [90]
      RAMSEY L B, JOHNSON S G, CAUDLE K E, et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update[J]. Clinical Pharmacology & Therapeutics, 2014, 96(4): 423-428.
      [91]
      GARRISON D A, TALEBI Z, EISENMANN E D, et al. Role of OATP1B1 and OATP1B3 in drug-drug interactions mediated by tyrosine kinase inhibitors[J]. Pharmaceutics, 2020, 12(9): 856. doi: 10.3390/pharmaceutics12090856.
      [92]
      ERGUN Y, OZDEMIR N Y, TOPTAS S, et al. Drug-drug interactions in patients using tyrosine kinase inhibitors: A multicenter retrospective study[J]. Journal of Buon, 2019, 24(4): 1719-1726.
    • Cited by

      Periodical cited type(8)

      1. 包韵滋,陈林源,邱铠滢,倪燕妹,丁汉卿,王丽平,刘子琪,詹若挺,陈立凯. 广藿香种植生态因子分析与生态种植模式研究进展. 广州中医药大学学报. 2024(11): 3084-3090 .
      2. 王晓宇. 浅析林下经济植物广藿香种质资源保护与栽培技术. 热带农业工程. 2023(03): 121-124 .
      3. 宋朝霞,曹理,李国辉. 有效微生物菌群在农业领域的研究与应用现状. 安徽农业科学. 2022(01): 21-23+54 .
      4. 佘晓环,李明,洪彪. 广藿香连作及轮作对其品质及土壤微生态的影响. 时珍国医国药. 2022(07): 1719-1722 .
      5. 顾艳,梅瑜,徐世强,孙铭阳,周芳,李静宇,王继华. 广藿香种质资源及栽培技术研究进展. 热带作物学报. 2022(08): 1595-1603 .
      6. 焦玲,武雪萍,李晓秀,李生平,李嘉欣. 负压灌溉下土壤水氮分布对黄瓜氮素吸收和干物质的影响. 中国土壤与肥料. 2022(11): 75-84 .
      7. 祝蕾,严辉,刘培,张振宇,张森,郭盛,江曙,段金廒. 药用植物根际微生物对其品质形成的影响及其作用机制的研究进展. 中草药. 2021(13): 4064-4073 .
      8. 范拴喜,崔佳茜,李丹,付林涛,赫晓云,闻杰. 不同改良措施对设施蔬菜土壤肥力和番茄品质的影响. 农业工程学报. 2021(16): 58-64 .

      Other cited types(8)

    Catalog

      Article views (149) PDF downloads (305) Cited by(16)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return