YUAN Hailin, LI Xiangce, SUN Qiuxuan, et al. Effects of Clostridium butyricum spores on growth performance, biochemical parameters in serum, intestinal flora and short-chain fatty acid content ofPaneaus vannamei[J]. Journal of South China Agricultural University, 2023, 44(2): 212-220. DOI: 10.7671/j.issn.1001-411X.202206042
    Citation: YUAN Hailin, LI Xiangce, SUN Qiuxuan, et al. Effects of Clostridium butyricum spores on growth performance, biochemical parameters in serum, intestinal flora and short-chain fatty acid content ofPaneaus vannamei[J]. Journal of South China Agricultural University, 2023, 44(2): 212-220. DOI: 10.7671/j.issn.1001-411X.202206042

    Effects of Clostridium butyricum spores on growth performance, biochemical parameters in serum, intestinal flora and short-chain fatty acid content ofPaneaus vannamei

    More Information
    • Received Date: December 31, 2021
    • Available Online: May 17, 2023
    • Objective 

      To investigate the effects of feeding Clostridium butyricum (CB) spores on the growth performance, biochemical parameters in serum, intestinal flora composition and contents of five short-chain fatty acids of Paneaus vannamei juvenile.

      Method 

      Basic diets were supplemented with CB spore product of 0, 0.050%, 0.075% and 0.100% mass fraction (The viable counts of bacteria in the diets were 0, 2.50×105, 3.75×105 and 5.00×105 CFU/g respectively). The P. vannamei juveniles with (1.42 ± 0.02) g initial body weight of each were fed for 30 days, and growth performance, serum biochemical indicators, intestinal flora composition and short chain fatty acid contents were detected.

      Result 

      Compared to the control group, the final body weights of the shrimps after 30 days feeding trial in the 0.050% and 0.075% CB groups significantly increased (P<0.05), and the weight gain rate significantly increased in the 0.050% CB group (P<0.05). The glucose concentration in serum of the 0.075% CB group and urea nitrogen concentration in serum of the 0.100% CB group significantly reduced (P<0.05), while the phosphorus concentration in serum of the 0.050% CB group significantly increased (P<0.05). Compared to the control group, the relative abundance of Planctomycetes and Patescibacteria significantly increased in the 0.050% CB group (P<0.05), while the relative abundance ofVibrio significantly reduced in the 0.050% and 0.075% CB groups (P<0.05). The diversity analysis indicated that the intestinal flora compositions were similar between the 0.050% and 0.075% CB groups, which were quite different from those of the control and 0.100% CB group. The intestinal contents of five short-chain fatty acids increased with dietary CB addition.

      Conclusion 

      The supplementation of CB spore in diets helps to inhibit the proliferation of intestinal pathogens and increase the contents of intestinal short chain fatty acids, thus may enhance the nutrients utilization and growth performance of P. vannamei juvenile. In this study, the appropriate amount of Clostridium butyricum spore in diet is 2.50×105 or 3.75×105 CFU/g.

    • [1]
      农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021.
      [2]
      POOLSAWAT L, LI X, HE M, et al. Clostridium butyricum as probiotic for promoting growth performance, feed utilization, gut health and microbiota community of tilapia (Oreochromis niloticus × O. aureus)[J]. Aquaculture Nutrition, 2019, 26(3): 657-670.
      [3]
      HE R P, FENG J, TIAN X L, et al. Effects of dietary supplementation of probiotics on the growth, activities of digestive and non-specific immune enzymes in hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀)[J]. Aquaculture Research, 2017, 48(12): 5782-5790. doi: 10.1111/are.13401
      [4]
      兰菲菲. 饲料中添加丁酸梭菌对鳗鲡生长与健康的促进作用[D]. 厦门: 集美大学, 2019.
      [5]
      潘晓东, 吴天星, 宋增幅, 等. 丁酸梭菌对鮸鱼肠粘膜结构及肠内短链脂肪酸的影响[C]//中国畜牧兽医学会, 中国畜牧兽医学会. 第四届第十次全国学术研讨会暨动物微生态企业发展战略论坛论文集(上册). 2010: 147-151.
      [6]
      朱振祥. 丁酸梭菌对鲤生长、免疫及肠道微生态的影响[D]. 新乡: 河南师范大学, 2019.
      [7]
      范晨薇. 丁酸梭菌对克氏原螯虾肠道健康的影响[D]. 武汉: 华中农业大学, 2020.
      [8]
      WANGARI M R, GAO Q, SUN C, et al. Effect of dietary Clostridium butyricum and different feeding patterns on growth performance, antioxidant and immune capacity in freshwater prawn (Macrobrachium rosenbergii)[J]. Aquaculture Research, 2020, 52(1): 12-22.
      [9]
      DUAN Y F, DONG H B, WANG Y, et al. Effects of the dietary probiotic Clostridium butyricum on intestine digestive and metabolic capacities, SCFA content and body composition in Marsupenaeus japonicus[J]. Journal of Ocean University of China, 2018, 17(3): 690-696. doi: 10.1007/s11802-018-3464-3
      [10]
      LI H D, TIAN X L, ZHAO K, et al. Effect of Clostridium butyricum in different forms on growth performance, disease resistance, expression of genes involved in immune responses and mTOR signaling pathway of Litopenaeus vannamai[J]. Fish and Shellfish Immunology, 2019, 87: 13-21. doi: 10.1016/j.fsi.2018.12.069
      [11]
      LUO K, TIAN X L, WANG B, et al. Evaluation of paraprobiotic applicability of Clostridium butyricum CBG01 in improving the growth performance, immune responses and disease resistance in Pacific white shrimp, Penaeus vannamei[J]. Aquaculture, 2021, 544: 737041. doi: 10.1016/j.aquaculture.2021.737041
      [12]
      TADESE D A, SUN C X, LIU B, et al. Combined effects of emodin and Clostridium butyricum on growth and non-specific immunity of giant freshwater prawns, Macrobrachium rosenbergii[J]. Aquaculture, 2020, 525: 735281. doi: 10.1016/j.aquaculture.2020.735281
      [13]
      DUAN Y F, ZHANG Y, DONG H B, et al. Effect of the dietary probiotic Clostridium butyricum on growth, intestine antioxidant capacity and resistance to high temperature stress in kuruma shrimp Marsupenaeus japonicus[J]. Journal of Thermal Biology, 2017, 66: 93-100. doi: 10.1016/j.jtherbio.2017.04.004
      [14]
      DUAN Y F, ZHANG J S, HUANG J, et al. Effects of dietary Clostridium butyricum on the growth, digestive enzyme activity, antioxidant capacity, and resistance to nitrite stress of Penaeus monodon[J]. Probiotics and Antimicrobial Proteins, 2019, 11(3): 938-945.
      [15]
      周建民, 付宇, 王伟唯, 等. 饲粮添加果寡糖对产蛋后期蛋鸡生产性能、营养素利用率、血清生化指标和肠道形态结构的影响[J]. 动物营养学报, 2019, 31(4): 1806-1815. doi: 10.3969/j.issn.1006-267x.2019.04.039
      [16]
      杨玲, 欧阳富龙, 袁旭鹏, 等. 饲料中添加复合益生菌对断奶仔猪生长性能、粪便微生物及血液生化指标的影响[J]. 中国饲料, 2018(11): 49-54. doi: 10.15906/j.cnki.cn11-2975/s.20181109
      [17]
      贾聪慧, 杨彩梅, 曾新福, 等. 丁酸梭菌对肉鸡生长性能、抗氧化能力、免疫功能和血清生化指标的影响[J]. 动物营养学报, 2016, 28(3): 908-915. doi: 10.3969/j.issn.1006-267x.2016.03.033
      [18]
      贾玲玲. 丁酸梭状芽孢杆菌CGMCC0313.1改善糖尿病及相关代谢紊乱[D]. 无锡: 江南大学, 2017.
      [19]
      邢帅, 朱琪, 梁东梅, 等. 丁酸梭菌缓解仔猪应激防御大肠杆菌病[J]. 中国饲料, 2018(7): 54-58. doi: 10.15906/j.cnki.cn11-2975/s.20180711
      [20]
      何家俊, 吴汉葵, 杨昕涧, 等. 丁酸梭菌对犊牛生长性能和血清生化、抗氧化、免疫指标及粪便微生物数量的影响[J]. 动物营养学报, 2021, 33(9): 5076-5085. doi: 10.3969/j.issn.1006-267x.2021.09.028
      [21]
      夏雨, 范荣波, 易华西, 等. 植物乳杆菌对凡纳滨对虾致病菌抑制及其对肠道菌群结构的影响[J]. 中国海洋大学学报(自然科学版), 2020, 50(10): 37-46. doi: 10.16441/j.cnki.hdxb.20190127
      [22]
      HUANG Z B, LI X Y, WANG L P, et al. Changes in the intestinal bacterial community during the growth of white shrimp, Litopenaeus vannamei[J]. Aquaculture Research, 2014, 47(6): 1737-1746.
      [23]
      张盛静, 赵小金, 宋晓玲, 等. 饲料添加益生菌对凡纳滨对虾肠道菌群、Toll受体及溶菌酶基因表达及抗感染的影响[J]. 中国水产科学, 2016, 23(4): 846-854.
      [24]
      DELMONT T O, QUINCE C, SHAIBER A, et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes[J]. Nature Microbiology, 2018, 3(7): 804-813. doi: 10.1038/s41564-018-0176-9
      [25]
      郁维娜, 戴文芳, 陶震, 等. 健康与患病凡纳滨对虾肠道菌群结构及功能差异研究[J]. 水产学报, 2018, 42(3): 399-409.
      [26]
      XIONG J B, WANG K , Wu J F, et al. Changes in intestinal bacterial communities are closely associated with shrimp disease severity[J]. Applied Microbiology and Biotechnology, 2015, 99(16): 6911-6919.
      [27]
      SUMON M S, AHMMED F, KHUSHI S S, et al. Growth performance, digestive enzyme activity and immune response of Macrobrachium rosenbergii fed with probiotic Clostridium butyricum incorporated diets[J]. Journal of King Saud University-Science, 2018, 30(1): 21-28. doi: 10.1016/j.jksus.2016.11.003
      [28]
      宋增福, 吴天星, 潘晓东. 丁酸梭菌对肠道上皮细胞黏附及对鳗弧菌抑制的研究[J]. 中国兽药杂志, 2006, 40(8): 9-12. doi: 10.3969/j.issn.1002-1280.2006.08.003
      [29]
      ZHOU Z G, LIU Y C, HE S X, et al. Effects of dietary potassium diformate (KDF) on growth performance, feed conversion and intestinal bacterial community of hybrid tilapia (Oreochromis niloticus♀ × O. aureus♂) [J]. Aquaculture, 2009, 291(1/2): 89-94. doi: 10.1016/j.aquaculture.2009.02.043
      [30]
      GAO Q, XIAO C, MIN M, et al. Effects of probiotics dietary supplementation on growth performance, innate immunity and digestive enzymes of silver pomfret, Pampus argenteus[J]. Indian Journal of Animal Research, 2016, 50: 936-941.
      [31]
      薛永强, 张辉华, 王达, 等. 短链脂肪酸对肠道健康的调控机制及在动物生产中的应用[J]. 饲料工业, 2020, 41(19): 18-22. doi: 10.13302/j.cnki.fi.2020.19.004
      [32]
      SILVA B C D, VIEIRA F D N, MOURINO J L P, et al. Butyrate and propionate improve the growth performance of Litopenaeus vannamei[J]. Aquaculture Research, 2016, 47: 612-623.
      [33]
      SILVA B C, NOLASCO-SORIA H, MAGALLON-BARAJAS F, et al. Improved digestion and initial performance of whiteleg shrimp using organic salt supplements[J]. Aquaculture Nutrition, 2016, 22(5): 997-1005.
      [34]
      DUAN Y F, ZHANG Y, DONG H B, et al. Effect of dietary poly-β-hydroxybutyrate (PHB) on growth performance, intestinal health status and body composition of Pacific white shrimp Litopenaeus vannamei (Boone, 1931)[J]. Fish and Shellfish Immunology, 2017, 60: 520-528. doi: 10.1016/j.fsi.2016.11.020
      [35]
      RINGER E. Effects of dietary lactate and propionate on growth and digesta in Arctic charr, Salvelinus alpinus (L.)[J]. Aquaculture, 1991, 96: 321-333.
      [36]
      MCDONALD J A K, MULLISH B H, PECHLIVANIS A, et al. Inhibiting growth of clostridioides difficile by restoring valerate, produced by the intestinal microbiota[J]. Gastroenterology, 2018, 155(5): 1495-1507. doi: 10.1053/j.gastro.2018.07.014
      [37]
      LI Y, DONG J L, XIAO H W, et al. Gut commensal derived-valeric acid protects against radiation injuries[J]. Gut Microbes, 2020, 11(4): 789-806.
      [38]
      李芳源, 王常安, 刘红柏. 丁酸梭菌对水产动物营养及免疫研究进展[J]. 水产学杂志, 2021, 34(5): 104-110. doi: 10.3969/j.issn.1005-3832.2021.05.016
    • Related Articles

      [1]LI Lei, ZHANG Yingnan, YANG Shubao, FENG Xiaogang, LIU Ying, DONG Hongyan, MA Jinping, LUAN Weimin. A study on development of lymphocytes in the chicken crop[J]. Journal of South China Agricultural University, 2014, 35(3): 24-29. DOI: 10.7671/j.issn.1001-411X.2014.03.005
      [2]CHEN Ke-wei, SHAO Tun, LIU Chun-yan, ZENG Ling. Effects of Host Age on the Reproduction and Development of Diachasmimorpha longicaudata[J]. Journal of South China Agricultural University, 2012, 33(4): 465-469. DOI: 10.7671/j.issn.1001-411X.2012.04.008
      [3]FENG Cheng-hao,WU Hong,ZHAO Sheng. The Developmental Anatomy of Two Kinds of Trichomes in Pogostemon cablin[J]. Journal of South China Agricultural University, 2006, 27(1): 88-91,116. DOI: 10.7671/j.issn.1001-411X.2006.01.023
      [4]LIN Li,REN Shun-xiang. Development and reproduction of B biotype Bemisia tabaci on variegated leafcrotones[J]. Journal of South China Agricultural University, 2005, 26(2): 39-42. DOI: 10.7671/j.issn.1001-411X.2005.02.010
      [5]Abstract. Effect of temperature on the development of Trichogramma ostriniae (Hymenoptera:Trichogrammatidae)[J]. Journal of South China Agricultural University, 2004, 25(4): 43-46. DOI: 10.7671/j.issn.1001-411X.2004.04.011
      [6]ZHONG Guo hong,LIANG Guang wen,MO Meng yi,ZENG Ling. Effects of Temperature and Humidity on Development of Experimental Cotton Leafworm Population[J]. Journal of South China Agricultural University, 2001, 22(3): 29-32. DOI: 10.7671/j.issn.1001-411X.2001.03.009
      [7]Wu Jiajiao ,Zhang Weiqiu ,Liang Guangwen. THE EFFECT OF TEMPERATURES ON THE DEVELOP-MENT AND FECUNDITY OF Thrips palmi Karny[J]. Journal of South China Agricultural University, 1995, (4): 14-19.
      [8]Liao Jinling, Feng Zhixin. EFFECT OF OXAMYL ON THk DEVELOPMENT OF THE NEMATODE,Meloidogyne arenaria[J]. Journal of South China Agricultural University, 1995, (2): 60-61.
      [9]Wang Xiaofengl, Fu Jiarui. CHARACTERISTICS OF DEVELOPMENT AND STORAGE OF MANGO SEEDS[J]. Journal of South China Agricultural University, 1994, (2): 26-31.
      [10]Wang Xiongying Wu Pentuand He Xianlai. A STUDY ON THE TEMPERATURE-RANGE FOR CONSTANT DEVELOPMENT (TRCD) OF BIVOLTIN Bombyx mori[J]. Journal of South China Agricultural University, 1992, (2): 98-100.
    • Cited by

      Periodical cited type(6)

      1. 刘雨滢,杜婷,付奕博,叶鑫煜,闫佳慧,卢玉婷. 丁酸梭菌的功能及其在水产养殖业中的应用. 饲料研究. 2025(05): 159-162 .
      2. 周秀珍,刘滔,张毅,王扬,赵敏洁,王旭堂,黄菊,冯凤琴. 混合益生菌对大口黑鲈生长性能、肉品质及肠道健康的影响. 动物营养学报. 2024(07): 4588-4609 .
      3. 常静,万建美. 丁酸梭菌调控动物肠道健康的研究进展. 饲料研究. 2024(16): 172-176 .
      4. 亓秀晔,张修,张冠军,陈静,徐龙飞. 一株丁酸梭菌冻干菌粉的获得及体内安全性评价. 家畜生态学报. 2024(10): 29-35 .
      5. 庞孟瑶. 日粮中添加丁酸梭菌对蛋鸡生产性能、血清生化指标及经济效益的影响. 饲料研究. 2023(05): 46-50 .
      6. 徐亚飞. 丁酸梭菌在水产养殖中的研究及应用进展. 水产养殖. 2023(08): 18-23 .

      Other cited types(5)

    Catalog

      Article views (139) PDF downloads (309) Cited by(11)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return