• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LÜ Enli, ZENG Boyang, ZENG Zhixiong, et al. Estimation of chicken body size based on point cloud edge smoothing and biometric features[J]. Journal of South China Agricultural University, 2023, 44(4): 619-627. DOI: 10.7671/j.issn.1001-411X.202206041
Citation: LÜ Enli, ZENG Boyang, ZENG Zhixiong, et al. Estimation of chicken body size based on point cloud edge smoothing and biometric features[J]. Journal of South China Agricultural University, 2023, 44(4): 619-627. DOI: 10.7671/j.issn.1001-411X.202206041

Estimation of chicken body size based on point cloud edge smoothing and biometric features

More Information
  • Received Date: June 26, 2022
  • Available Online: September 03, 2023
  • Published Date: May 23, 2023
  • Objective 

    To address the issues of edge jitter in chicken point clouds, feather redundancy and challenging feature point extraction in chicken body size estimation using depth cameras, this paper proposes a method combining point cloud edge smoothing and biometric-based feature point extraction for mult-position estimation of chicken body size.

    Method 

    Firstly, the point cloud was preprocessed by direct filtering, statistical filtering and other methods to reduce the impact of background and noise on the target. Secondly, the edge was constrained by the spatial change of point cloud, and the edge was smoothed by continuous multi-frame sequence changes, so as to reduce the interference of edge jitter on the extraction of body measurement points. Thirdly, the biological characteristics of the processed point cloud were analyzed. Combined with the edge algorithm based on neighborhood analysis, the RGB image was fused and the feature points were extracted by Canny edge detection, Hough transform and other methods. Finally, the chest width, semi diving length and tibial length were estimated according to the feature points.

    Result 

    The test results showed that the average error of estimated chest width was 6.64%, the average error of tibial length was 5.93%, and the average error of semi diving length was 3.34%. The average calculation time of body size per frame image was 8.8 s.

    Conclusion 

    The algorithm of this paper can provide a technical reference for chicken body size measurement.

  • [1]
    沈明霞, 丁奇安, 陈佳, 等. 信息感知技术在畜禽养殖中的研究进展[J]. 南京农业大学学报, 2022, 45(5): 1072-1085.
    [2]
    JOHNSTONA M, EDWARDSD S. Welfare implications of identification of cattle by ear tags[J]. The Veterinary Record, 1996, 138(25): 612-614. doi: 10.1136/vr.138.25.612
    [3]
    ZARAGOZA O, ENRIQUE L. Evaluation of the accuracy of simple body measurements for live weight prediction in growing-finishing pigs[D]. Champion: University of Illinois at Urban-Champagin, 2011: 1-2.
    [4]
    陈瑶, 张云伟, 雷金辉, 等. 基于视觉的四足动物骨架及行走步态特征提取方法[J]. 电子测量与仪器学报, 2022, 36(2): 68-77.
    [5]
    彭孝东, 时磊, 何静, 等. 消费级RGB-D相机在农业领域应用现状与发展趋势[J]. 中国农机化学报, 2022, 43(4): 206-215.
    [6]
    张婧婧, 李勇伟. 基于机器视觉的马体尺测量系统设计与研究[J]. 计算机测量与控制, 2017, 25(12): 17-20.
    [7]
    尹令, 蔡更元, 田绪红, 等. 多视角深度相机的猪体三维点云重构及体尺测量[J]. 农业工程学报, 2019, 35(23): 201-208.
    [8]
    刘同海, 滕光辉, 付为森, 等. 基于机器视觉的猪体体尺测点提取算法与应用[J]. 农业工程学报, 2013, 29(2): 161-168.
    [9]
    马学磊, 薛河儒, 周艳青, 等. 基于改进区域生长法的羊体点云分割及体尺参数测量[J]. 中国农业大学学报, 2020, 25(3): 99-105.
    [10]
    赵建敏, 赵成, 夏海光. 基于Kinect v4的牛体尺测量方法[J]. 计算机应用, 2022, 42(5): 1598-1606.
    [11]
    戚超. 基于深度相机和机器视觉技术的鸡胴体质量在线分级系统[D]. 南京: 南京农业大学, 2019.
    [12]
    AYDIN A. Using 3D vision camera system to automatically assess the level of inactivity in broiler chickens[J]. Computers and Electronics in Agriculture, 2017, 135: 4-10. doi: 10.1016/j.compag.2017.01.024
    [13]
    MORTENSEN A K, LISOUSKI P, AHRENDT P. Weight prediction of broiler chickens using 3D computer vision[J]. Computers and Electronics in Agriculture, 2016, 123: 319-326. doi: 10.1016/j.compag.2016.03.011
    [14]
    赵振华, 黎寿丰, 黄华云, 等. 2个品系肉鸡体尺性状和屠宰性状的典型相关分析[J]. 福建农林大学学报(自然科学版), 2012, 41(2): 166-169.
    [15]
    郭宏杰, 马德新. 计算机视觉技术在农业领域的应用[J]. 乡村科技, 2021, 12(14): 119-120.
    [16]
    董静超, 陈家雪, 李华, 等. 清远麻鸡慢羽系屠宰性状与体尺性状的主成分分析[J]. 江苏农业科学, 2022, 50(5): 151-155.
    [17]
    姜宏正, 杨德智, 马中华, 等. 儋州鸡体尺性状全基因组关联分析[J]. 中国畜牧兽医, 2022, 49(2): 598-607.
    [18]
    文杰. 肉鸡种业的昨天、今天和明天[J]. 中国畜牧业, 2021(17): 27-30.
    [19]
    XU R, TYASI T L, QIN N, et al. Assessment of relationship between body weight and body measurement traits of indigenous Chinese Dagu chickens using path analysis[J]. Indian Journal of Animal Research, 2017: 588-593.
    [20]
    FU J, WANG S, LU Y, et al. Kinect-like depth denoising[C]//2012 IEEE International Symposium on Circuits and Systems (ISCAS). Seoul: IEEE, 2012: 512-515.
    [21]
    ZHANG Y Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. doi: 10.1109/34.888718
    [22]
    中华人民共和国农业部. 家禽生产性能名词术语和度量统计方法: NY/T 823—2004[S]. 北京: 中国农业出版社, 2009: 3-4.
    [23]
    LIG X, LIUX L, MAY F, et al. Body size measurement and live body weight estimation for pigs basedon back surface point clouds[J]. Biosystems Engineering, 2022, 218: 10-22. doi: 10.1016/j.biosystemseng.2022.03.014
    [24]
    XU G, RUAN P. Point cloud boundary detection in preprocessor of optical-mechanical integrated simulation[J]. Infrared and Laser Engineering, 2016, 45(4): 0428001. doi: 10.3788/irla201645.0428001
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (100) PDF downloads (10) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return