Citation: | HU Shan, MO Weidi, ZHOU Zhicheng, et al. Biological characteristics of pathogenic anthracnose Colletotrichum fioriniae on Rhododendron delavayi and screening of fungicides[J]. Journal of South China Agricultural University, 2023, 44(4): 570-576. DOI: 10.7671/j.issn.1001-411X.202206039 |
To investigate the biological characteristics of Colletotrichum fioriniae on Rhododendron delavayi in Baili Azalea Nature Reserve of Guizhou Province, and to screen effective fungicides for disease control.
The mycelial growth rate method was applied to explore the biological characteristics of C. fioriniae on R. delavayi. The indoor toxicity of pathogen was determined using 10 fungicides, including trifloxystrobin·tebuconazole, pyraclostrobin, difenoconazole, propiconazole, bromothalonil, dithianon, tetramycin, ethylicin, cnidiadin and ningnanmycin. Combined toxicity of two fungicides with high antifungal activities and different toxicological mechanisms to C. fioriniae was assessed in different mixture ratio.
The pathogenic fungi could grow under 5−35 ℃ and pH 5−11. The optimum temperature was 25 ℃ and the optimum pH was 8. The best carbon sources were glucose and soluble starch. Peptone was the best nitrogen source for the pathogen growth and the growth rate reached the maximum on PSA medium. The results of the indoor toxicity test indicated that all of the 10 fungicides inhibited the mycelial growth of the pathogen to some extent. Among 10 fungicides, trifloxystrobin·tebuconazole, pyraclostrobin, tetramycin, difenoconazole, and propiconazole had better inhibitory effect with EC50 of 0.102, 0.118, 1.107, 1.202 and 2.101 mg/L, respectively, followed by cnidiadin with EC50 of 6.803 mg/L. The combination of tetramycin and difenoconazole with different mixture ratio showed synergistic inhibiting effect on the pathogen compared with single fungicide. The optimal mixture ratio was 7∶3 with co-toxicity coefficient (CTC) of 584.56, which was obviously higher than those of other mixture ratios. Both the mixture ratio of 6∶4 and 8∶2 had CTC above 500, being next to the best ratio.
The growth of C. fioriniae is significantly affected by temperature, pH, culture medium, carbon and nitrogen sources. The combination of tetramycin and difenoconazole in different mixture ratios has obvious synergistic toxicity, and the 7∶3 mixture ratio can be selected for field control experiments.
[1] |
杨成华, 李贵远, 邓伦秀, 等. 贵州百里杜鹃保护区的杜鹃属植物种类及其观赏特性研究[J]. 西部林业科学, 2006, 35(4): 14-18. doi: 10.3969/j.issn.1672-8246.2006.04.002
|
[2] |
CAI Y F, WANG J H, LI S F, et al. Photosynthetic response of an alpine plant, Rhododendron delavayi Franch, to water stress and recovery: The role of mesophyll conductance[J]. Frontiers in Plant Science, 2015, 6: 1089.
|
[3] |
ZHANG L, XU P W, CAI Y F, et al. The draft genome assembly of Rhododendron delavayi Franch. var. delavayi[J]. Gigascience, 2017, 6(10): gix076. doi: 10.1093/gigascience/gix076.
|
[4] |
杨秀梅, 瞿素萍, 张宝琼, 等. 高山杜鹃枯梢病病原菌鉴定及品种抗病性调查[J]. 园艺学报, 2019, 46(5): 923-930. doi: 10.16420/j.issn.0513-353x.2018-0467
|
[5] |
杨秀梅, 唐艺榕, 李进昆, 等. 杜鹃炭疽病病原鉴定及其生物学特性研究[J]. 江西农业学报, 2018, 30(3): 74-77. doi: 10.19386/j.cnki.jxnyxb.2018.03.15
|
[6] |
WANG P H, TSAO C C, PAI T Y. Exobasidium japonicum inhabits in node strategically during summer in Rhododendron[J]. Sydowia-Horn, 2014, 66(2): 325-334.
|
[7] |
童俊, 毛静, 周媛, 等. 武汉地区杜鹃花主要病虫害调查研究[J]. 现代农业科技, 2021(5): 115-117. doi: 10.3969/j.issn.1007-5739.2021.05.049
|
[8] |
刘浩凯, 张辉, 陈玲芳, 等. 浙江景宁云锦杜鹃叶斑病病原菌鉴定及生物学特征研究[J]. 浙江林业科技, 2020, 40(2): 9-16. doi: 10.3969/j.issn.1001-3776.2020.02.002
|
[9] |
胡芳菲. 吉安市苗圃几种常见树木病害及防治[J]. 园艺与种苗, 2021, 41(11): 51-52. doi: 10.16530/j.cnki.cn21-1574/s.2021.11.019
|
[10] |
陈明珠, 丁海霞, 刘国琴, 等. 锦绣杜鹃叶肿病菌鉴定及病原菌培养代谢产物的初步分析[J]. 植物病理学报, 2021, 51(6): 1005-1010. doi: 10.13926/j.cnki.apps.000486
|
[11] |
任纬恒. 高山杜鹃病害的病原菌分离鉴定与防治基础研究[D]. 贵阳: 贵州师范大学, 2019: 33-45.
|
[12] |
HU S, PENG L J, DING H X, et al. First report of Colletotrichum fioriniae causing anthracnose on Rhododendron delavayi in China[J]. Plant Disease, 2022, 106(11): 2995.
|
[13] |
方中达. 植病研究方法 [M]. 3版. 北京: 中国农业出版社. 1998: 140-141.
|
[14] |
SUN Y P, JOHNSON E R. Analysis of joint action of insecticides against house flies[J]. Journal of Economic Entomology, 1960, 53(5): 887-892. doi: 10.1093/jee/53.5.887
|
[15] |
BARONCELLI R, SARROCCO S, ZAPPARATA A, et al. Characterization and epidemiology of Colletotrichum acutatum sensu lato (C. chrysanthemi) causing Carthamus tinctorius anthracnose[J]. Plant Pathology, 2015, 64(2): 375-384. doi: 10.1111/ppa.12268
|
[16] |
张琳, 彭琳, 邵郅伟, 等. 南瓜炭疽病菌Colletotrichum brevisporum生物学特性及药剂防治[J]. 植物保护, 2021, 47(4): 59-65.
|
[17] |
黄蔚, 崔丽红, 谢王超, 等. 西瓜新炭疽病病原菌分子鉴定及其生物学特性初探[J]. 中国农学通报, 2022, 38(1): 131-136. doi: 10.11924/j.issn.1000-6850.casb2021-0077
|
[18] |
曹尚, 张欢, 贺明阳, 等. 高粱炭疽病菌Colletotrichum sublineola 生物学特性研究[J]. 东北农业科学, 2022, 47(6): 85-88.
|
[19] |
宋慧云, 段志豪, 张伟豪, 等. 宫粉羊蹄甲炭疽病病原鉴定及其药剂筛选[J]. 南方农业学报, 2018, 49(10): 1975-1981.
|
[20] |
冉飞, 陈佳, 莫飞旭, 等. 百香果炭疽病菌生物学特性及室内药剂筛选[J]. 热带作物学报, 2021, 42(4): 1080-1085. doi: 10.3969/j.issn.1000-2561.2021.04.025
|
[21] |
孟珂, 张亚波, 常君, 等. 8种杀菌剂对9种薄壳山核桃炭疽病病原菌的毒力测定[J]. 林业科学研究, 2021, 34(1): 153-164. doi: 10.13275/j.cnki.lykxyj.2021.01.019
|
[22] |
YUN Y Z, YU F W, WANG N, et al. Sensitivity to silthiofam, tebuconazole and difenoconazole of Gaeumannomyces graminis var. tritici isolates from China[J]. Pest Management Science, 2012, 68(8): 1156-1163. doi: 10.1002/ps.3277
|
[23] |
WANG Q P, ZHANG C, LONG Y H, et al. Bioactivity and control efficacy of the novel antibiotic tetramycin against various kiwifruit diseases[J]. Antibiotics (Basel), 2021, 10(3): 289.
|
[24] |
王晓琳, 邬劼, 黄洁雪, 等. 四霉素与丙硫菌唑复配对草莓炭疽病菌的增效作用[J]. 江苏农业科学, 2021, 49(10): 91-95. doi: 10.15889/j.issn.1002-1302.2021.10.017
|
[25] |
韦薇, 覃义杰, 和立连, 等. 苯醚甲环唑和代森锰锌复配对柑桔炭疽病菌的毒力及防治效果[J]. 中国南方果树, 2021, 50(4): 22-25. doi: 10.13938/j.issn.1007-1431.20200812
|
[26] |
贤小勇, 朱桂宁, 林珊宇, 等. 吡唑醚菌酯与苯醚甲环唑对核桃炭疽病菌的联合毒力及林间防治效果[J]. 南方农业学报, 2021, 52(6): 1633-1640.
|