• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LIU Lingrui, ZENG Zijian, NIAN Hai, et al. Physiological mechanisms of zinc oxide nanoparticles alleviating aluminum stress in soybean[J]. Journal of South China Agricultural University, 2023, 44(5): 787-793. DOI: 10.7671/j.issn.1001-411X.202205059
Citation: LIU Lingrui, ZENG Zijian, NIAN Hai, et al. Physiological mechanisms of zinc oxide nanoparticles alleviating aluminum stress in soybean[J]. Journal of South China Agricultural University, 2023, 44(5): 787-793. DOI: 10.7671/j.issn.1001-411X.202205059

Physiological mechanisms of zinc oxide nanoparticles alleviating aluminum stress in soybean

More Information
  • Received Date: May 30, 2022
  • Available Online: November 12, 2023
  • Published Date: May 10, 2023
  • Objective 

    This study evaluated the effects of different zinc oxide nanoparticles (ZnO NPs) contents on the growth and physiological characteristics of Glycine max (Linn.) Merr. under aluminum (Al) stress, aiming to provide some reference for the application of metal nanomaterials in agriculture.

    Method 

    In a pot experiment, Al resistant cultivar ‘Huachun 2’ and Al sensitive cultivar ‘Huachun 6’ were selected and treated with ZnO NPs in various dosages of (0, 25, 50, 100 and 150 mg/kg) under 0.3 g/kg Al stress conditions, to investigate the effects of ZnO NPs on soybean physiological indicators (fresh weight, root length and chlorophyll content), total superoxide dismutase (T-SOD) activity and malondialdehyde (MDA) concentration.

    Result 

    Al stress significantly reduced the fresh weight and root length of ‘Huachun 6’, and increased its MDA concentration. For ‘Huachun 2’, a significant increase in its chlorophyll a and chlorophyll b content was observed, while there was no significant effect on other indicators. Application of ZnO NPs under no Al stress conditions increased the fresh weight, root length and SOD activity of both ‘Huachun 6’ and ‘Huachun 2’. When ZnO NPs were applied at various dosages under Al stress, ‘Huachun 6’ gained 13.2%−100.4% in fresh weight and 7.8%−35.8% in root length, respectively, while ‘Huachun 2’ reached its highest fresh weight at 150 mg/kg ZnO NPs. The chlorophyll a content of both ‘Huachun 6’ and ‘Huachun 2’ reached the highest value under 25 mg/kg ZnO NPs treatment under Al stress. Different levels of ZnO NPs had no significant effect on the chlorophyll b content of ‘Huachun 6’ and significantly reduced the chlorophyll b content of ‘Huachun 2’, reaching the lowest value (3.5 mg/g) at 100 mg/kg ZnO NPs. As ZnO NPs content increased, the T-SOD activity of ‘Huachun 6’ increased, and that of ‘Huachun 2’ reached the peak (820 U/g) at 50 mg/kg ZnO NPs, and then showed a decreasing trend. The minimum MDA concentration of ‘Huachun 6’ and ‘Huachun 2’ occurred at 25 and 50 mg/kg of ZnO NPs treatment, respectively.

    Conclusion 

    Al stress severely affects the growth and development of soybean, while the application of ZnO NPs, to some extent, can alleviate the negative effects of Al stress on soybean, and improve the growth and development of the plants.

  • [1]
    HODSON M E, DONNER E. Managing adverse soil chemical environments[M]//GREGORY P J, NORTCLIFF S. Soil conditions and plant growth. Blackwell Publishing Ltd, 2013: 195-237.
    [2]
    KUNITO T, ISOMURA I, SUMI H, et al. Aluminum and acidity suppress microbial activity and biomass in acidic forest soils[J]. Soil Biology and Biochemistry, 2016, 97: 23-30. doi: 10.1016/j.soilbio.2016.02.019
    [3]
    郑开敏, 肖家昶, 马俊英, 等. 柠檬酸对铝胁迫下豆瓣菜生长及生理的影响[J]. 江苏农业学报, 2022, 38(2): 476-485. doi: 10.3969/j.issn.1000-4440.2022.02.023
    [4]
    ZHANG X, LONG Y, HUANG J, et al. Molecular mechanisms for coping with Al toxicity in plants[J]. International Journal of Molecular Sciences, 2019, 20(7): 1551. doi: 10.3390/ijms20071551.
    [5]
    渠心静. 磷缓解油茶幼苗铝胁迫的生理机制研究[D]. 长沙: 中南林业科技大学, 2021.
    [6]
    谢会雅, 陈舜尧, 张阳, 等. 中国南方土壤酸化原因及土壤酸性改良技术研究进展[J]. 湖南农业科学, 2021(2): 104-107. doi: 10.16498/j.cnki.hnnykx.2021.002.027
    [7]
    CHEN Z C, LIAO H. Organic acid anions: An effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils[J]. Journal of Genetics and Genomics, 2016, 43(11): 631-638. doi: 10.1016/j.jgg.2016.11.003
    [8]
    YANG T, LIU G, LI Y, et al. Rhizosphere microbial communities and organic acids secreted by aluminum-tolerant and aluminum-sensitive soybean in acid soil[J]. Biology and Fertility of Soils, 2011, 48(1): 97-108.
    [9]
    金婷婷, 刘鹏, 黄朝表, 等. 铝胁迫下大豆根系分泌物对根际土壤微生态的影响[J]. 土壤学报, 2008(3): 526-534. doi: 10.3321/j.issn:0564-3929.2008.03.020
    [10]
    LI W, SUN Y, WANG B, et al. Transcriptome analysis of two soybean cultivars identifies an aluminum responsive antioxidant enzyme GmCAT1[J]. Bioscience, Biotechnology and Biochemistry, 2020, 84(7): 1394-1400. doi: 10.1080/09168451.2020.1740970
    [11]
    吴彩玉, 陈珠, 李育军, 等. 不同浓度铝胁迫下水分胁迫对大豆幼苗生理代谢的影响[J]. 长江蔬菜, 2018(14): 39-44.
    [12]
    周莹. 铝胁迫下大豆(Glycine Max L. )根系柠檬酸分泌相关基因功能分析[D]. 长春: 吉林大学, 2018.
    [13]
    邓晓霞, 李月明, 姚堃姝, 等. 植物适应酸铝胁迫机理的研究进展[J]. 生物工程学报, 2022, 38(8): 2754-2766. doi: 10.13345/j.cjb.210954
    [14]
    陈士勇, 王锐, 陈志青, 等. 纳米锌和离子锌对水稻产量形成及籽粒锌含量的影响[J]. 作物杂志, 2022(4): 107-114. doi: 10.16035/j.issn.1001-7283.2022.04.015
    [15]
    CHANG Y, ZHANG M, XIA L, et al. The toxic effects and mechanisms of CuO and ZnO nanoparticles[J]. Materials, 2012, 5(12): 2850-2871. doi: 10.3390/ma5122850
    [16]
    方清. 纳米氧化锌对镉胁迫下水稻生长及吸收镉的影响[D]. 合肥: 安徽农业大学, 2020.
    [17]
    陈娟妮, 鲁梅, 丁伟. 纳米氧化锌对烟草疫霉菌的抑菌作用研究[J]. 植物医生, 2021, 34(2): 34-40. doi: 10.13718/j.cnki.zwys.2021.02.008
    [18]
    孙露莹, 宋凤斌, 李向楠, 等. 纳米氧化锌对玉米种子萌发及根系碳代谢的影响[J]. 土壤与作物, 2020, 9(1): 40-49. doi: 10.11689/j.issn.2095-2961.2020.01.005
    [19]
    NAIR R. Effects of nanoparticles on plant growth and development[M]//KOLE C, KUMAR D S, KHODAKOVS-KAYA M V. Plant Nanotechnology. Switzerland: Springer International Publishing, 2016, Chapter 5: 95-118.
    [20]
    RIZWAN M, ALI S, QAYYUM M F, et al. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review[J]. Journal of Hazardous Materials, 2017, 322: 2-16. doi: 10.1016/j.jhazmat.2016.05.061
    [21]
    CAI Z, CHENG Y, XIAN P, et al. Fine-mapping QTLs and the validation of candidate genes for aluminum tolerance using a high-density genetic map[J]. Plant and Soil, 2019, 444(1/2): 119-137.
    [22]
    邱念伟, 王修顺, 杨发斌, 等. 叶绿素的快速提取与精密测定[J]. 植物学报, 2016, 51(5): 667-678. doi: 10.11983/CBB15190
    [23]
    张凤翔. 黄嘌呤氧化酶法测定血清中超氧化物歧化酶活力的影响因素[J]. 云南医药, 2001(6): 473-474.
    [24]
    GARCIA Y J, RODRÍGUEZ-MALAVER A J, PEÑALOZA N. Lipid peroxidation measurement by thiobarbituric acid assay in rat cerebellar slices[J]. Journal of Neuroscience Methods, 2005, 144(1): 127-135. doi: 10.1016/j.jneumeth.2004.10.018
    [25]
    SINGH A, PRASAD S M, SINGH S. Impact of nano ZnO on metabolic attributes and fluorescence kinetics of rice seedlings[J]. Environmental Nanotechnology, Monitoring & Management, 2018, 9: 42-49.
    [26]
    KHAN M R, ADAM V, RIZVI T F, et al. Nanoparticle-plant interactions: Two-way traffic[J]. Small, 2019, 15(37): 1901794. doi: 10.1002/smll.201901794.
    [27]
    KARUNAKARAN G, SURIYAPRABHA R, RAJENDRAN V, et al. Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions[J]. IET Nanobiotechnology, 2016, 10(4): 171-177. doi: 10.1049/iet-nbt.2015.0007
    [28]
    YANG Z, CHEN J, DOU R, et al. Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.)[J]. International Journal of Environmental Research and Public Health, 2015, 12(12): 15100-15109. doi: 10.3390/ijerph121214963
    [29]
    VAN DE MORTEL J E, VILLANUEVA L A, SCHAT H, et al. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens[J]. Plant Physiology, 2006, 142(3): 1127-1147. doi: 10.1104/pp.106.082073
    [30]
    NEOGY M, DATTA J, ROY A K, et al. Studies on phytotoxic effect of aluminium on growth and some morphological parameters of Vigna radiata L. Wilczek[J]. Journal of Environmental Biology, 2002, 23(4): 411-416.
    [31]
    ZHANG X B, LIU P, YANG Y S, et al. Effect of Al in soil on photosynthesis and related morphological and physiological characteristics of two soybean genotypes[J]. Botanical Studies, 2007, 48(4): 435-444.
    [32]
    BASHIR A, RIZWAN M, ALI S, et al. Effect of composted organic amendments and zinc oxide nanoparticles on growth and cadmium accumulation by wheat; A life cycle study[J]. Environmental Science and Pollution Research, 2020, 27(19): 23926-23936. doi: 10.1007/s11356-020-08739-8
    [33]
    PIRZADAH T B, MALIK B, TAHIR I, et al. Aluminium stress modulates the osmolytes and enzyme defense system in Fagopyrum species[J]. Plant Physiology and Biochemistry, 2019, 144: 178-186. doi: 10.1016/j.plaphy.2019.09.033
    [34]
    LI Y, LIANG L, LI W, et al. ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity[J]. Journal of Nanobiotechnology, 2021, 19(1): 75. doi: 10.1186/s12951-021-00820-9.
  • Cited by

    Periodical cited type(3)

    1. 孙玉彤,胡伟. 纳米氧化锌浸种对水稻小麦玉米幼苗素质的影响. 农业技术与装备. 2025(02): 171-172+177 .
    2. 田雪军,徐佩琦,吴晶晶,徐艳,熊兴鹏. 外源褪黑素对玫瑰高温胁迫的缓解效应. 山西农业大学学报(自然科学版). 2024(01): 34-42 .
    3. 王为木,张晓瑾,刘慧,董姝楠,齐张蓉. 2018—2022年“干旱胁迫对植物的影响研究”可视化分析. 灌溉排水学报. 2024(07): 1-10 .

    Other cited types(0)

Catalog

    Article views (150) PDF downloads (19) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return