ZENG Shan, ZENG Li, LIU Weijian, et al. Design and experiment of rigid-flexible coupling rod tooth threshing device of harvester for ratooning rice[J]. Journal of South China Agricultural University, 2022, 43(5): 61-69. DOI: 10.7671/j.issn.1001-411X.202205048
    Citation: ZENG Shan, ZENG Li, LIU Weijian, et al. Design and experiment of rigid-flexible coupling rod tooth threshing device of harvester for ratooning rice[J]. Journal of South China Agricultural University, 2022, 43(5): 61-69. DOI: 10.7671/j.issn.1001-411X.202205048

    Design and experiment of rigid-flexible coupling rod tooth threshing device of harvester for ratooning rice

    More Information
    • Received Date: May 21, 2022
    • Available Online: May 17, 2023
    • Objective 

      In response to the problem of high moisture content of seed and straw, high bonding force between seed and rice spike at the first harvest season of ratooning rice, there will lead to large amount of broken seeds when harvested by harvesters with traditional rigid rod-tooth threshing device, a rigid-flexible coupled rod-tooth threshing drum based on the axial flow threshing drum was designed.

      Method 

      The EDEM discrete element simulation software was used to simulate the threshing process, and the average normal striking force and tangential kneading force of three different rod teeth (rigid, flexible, and rigid-flexible coupling) on seeds were obtained through post-processing. Using entrapment loss, breakage rate and unclean rate as the evaluation indexes, the orthogonal bench validation tests were carried out with different drum speed as single factor, and three factors (drum speed, seed moisture content, and rod teeth type) and three levels.

      Result 

      The EDEM simulation results showed that the average normal striking force and tangential kneading force of the three types of rod teeth on seeds were the largest for the rigid rod teeth and the smallest for the flexible rod teeth at the drum speeds of 650, 750 and 850 r/min, respectively. The results of single-factor test showed that the broken rate of seeds threshed by the rigid rod tooth threshing device was significantly higher than those of the flexible rod tooth and the rigid-flexible coupling threshing devices. The broken rates of the flexible rod tooth, rigid rod tooth and rigid-flexible coupling rod tooth were very high at 900 r/min, with the broken rates of 1.632%, 1.925% and 2.564%, respectively. The unthawed rate and the entrained loss rate of the flexible rod tooth threshing device were significantly higher than those of the rigid rod tooth and the rigid-flexible coupling threshing devices. The unthreshing rates of the flexible rod tooth, rigid rod tooth and rigid-flexible coupling rod tooth were very low at 900 r/min, with the unthreshing rates of 0.286%, 0.071% and 0.240%, respectively. The entrainment loss rate of the flexible rod tooth, rigid rod tooth and rigid-flexible coupling rod tooth were very low at 850 r/min, with the entrainment loss rates of 1.595%, 0.729% and 1.341%, respectively. The results of orthogonal test showed that the order of factor affecting seed entrainment loss and broken rate was rod tooth type > drum speed > seed moisture content, and the order of factor affecting the uncleaned rate was rod tooth type > seed moisture content > drum speed.

      Conclusion 

      Under the same conditions, the rigid-flexible coupling threshing device can reduce the rice breaking rate while ensuring the seed removal rate. The results can provide a reference for design and application of threshing device of harvester for ratooning rice.

    • [1]
      王飞, 彭少兵. 水稻绿色高产栽培技术研究进展[J]. 生命科学, 2018, 30(10): 1129-1136.
      [2]
      徐富贤, 熊洪, 张林, 等. 再生稻产量形成特点与关键调控技术研究进展[J]. 中国农业科学, 2015, 48(9): 1702-1717. doi: 10.3864/j.issn.0578-1752.2015.09.04
      [3]
      刘伟健, 罗锡文, 曾山, 等. 履带式再生稻收获机田间转弯机理研究与性能试验[J/OL]. 吉林大学学报(工学版), [2022-02-27]. https://doi.org/10.13229/j.cnki.jdxbgxb20211178.
      [4]
      卢康, 张国忠, 彭少兵, 等. 双割台双滚筒全履带式再生稻收割机的设计与性能试验[J]. 华中农业大学学报, 2017, 36(5): 108-114.
      [5]
      徐立章, 李耀明, 丁林峰. 水稻谷粒与脱粒元件碰撞过程的接触力学分析[J]. 农业工程学报, 2008, 25(6): 146-149. doi: 10.3321/j.issn:1002-6819.2008.06.029
      [6]
      徐立章, 李耀明. 水稻谷粒冲击损伤临界速度分析[J]. 农业机械学报, 2009, 40(8): 54-57.
      [7]
      常光宝. 水稻谷粒的力学性能及脱粒损伤机理研究[D]. 镇江: 江苏大学, 2009.
      [8]
      李佳圣, 李耀明, 徐立章, 等. 再生稻联合收获机脱粒分离装置的设计与试验[J]. 农机化研究, 2022, 44(2): 85-89. doi: 10.3969/j.issn.1003-188X.2022.02.015
      [9]
      王显仁, 李耀明, 徐立章. 水稻谷粒的机械损伤机理及试验[J]. 农机化研究, 2007, 29(12): 141-143. doi: 10.3969/j.issn.1003-188X.2007.12.044
      [10]
      王显仁, 李耀明, 徐立章. 水稻脱粒破碎率与脱粒元件速度关系研究[J]. 农业工程学报, 2007, 23(8): 16-19. doi: 10.3321/j.issn:1002-6819.2007.08.003
      [11]
      谢方平, 罗锡文, 卢向阳, 等. 柔性杆齿滚筒脱粒机理[J]. 农业工程学报, 2009, 25(8): 110-114. doi: 10.3969/j.issn.1002-6819.2009.08.020
      [12]
      谢方平, 罗锡文, 苏爱华, 等. 刚性弓齿与杆齿及柔性齿的脱粒对比试验[J]. 湖南农业大学学报(自然科学版), 2005, 31(6): 648-651.
      [13]
      师清翔, 刘师多, 姬江涛, 等. 控速喂入柔性脱粒机理研究[J]. 农业工程学报, 1996, 12(2): 177-180. doi: 10.3321/j.issn:1002-6819.1996.02.036
      [14]
      师清翔, 刘师多, 姬江涛, 等. 水稻的控速喂入柔性脱粒试验研究[J]. 农业机械学报, 1996, 27(1): 41-46.
      [15]
      付君, 张屹晨, 程超, 等. 刚柔耦合式小麦脱粒弓齿设计及试验[J]. 吉林大学学报(工学版), 2020, 50(2): 730-738.
      [16]
      任述光, 谢方平, 罗锡文, 等. 柔性齿与刚性齿脱粒水稻功耗比较分析与试验[J]. 农业工程学报, 2013, 29(5): 12-18.
      [17]
      钱震杰, 金诚谦, 袁文胜, 等. 柔性脱粒齿杆与谷物含摩擦打击动力学模型[J]. 吉林大学学报(工学版), 2021, 51(3): 1121-1130.
      [18]
      林文雄, 陈鸿飞, 张志兴, 等. 再生稻产量形成的生理生态特性与关键栽培技术的研究与展望[J]. 中国生态农业学报, 2015, 23(4): 392-401.
      [19]
      康艳, 金诚谦, 陈艳普, 等. 谷物籽粒损伤研究现状[J]. 中国农机化学报, 2020, 41(7): 94-104.
      [20]
      MIU P I, KUTZBACH H D. Modeling and simulation of rain threshing and separation in threshing units: Part I[J]. Computers and Electronics in Agriculture, 2008, 60(1): 96-104. doi: 10.1016/j.compag.2007.07.003
      [21]
      中国农业机械化科学研究院. 农业机械设计手册(上、下册)[M]. 北京: 中国农业科学技术出版社, 2007: 928-933.
      [22]
      王立军, 彭博, 宋慧强. 玉米收获机聚氨酯橡胶筛筛分性能仿真与试验[J]. 农业机械学报, 2018, 49(7): 90-96. doi: 10.6041/j.issn.1000-1298.2018.07.011
      [23]
      ZHAN S, LI Y M, DONG Y H, et al. Simulation of rice threshing performance with concentric and non-concentric threshing gaps[J]. Biosystems Engineering, 2020, 197: 270-284. doi: 10.1016/j.biosystemseng.2020.05.020
      [24]
      LI X, DU Y, LIU L, et al. Research on the constitutive model of low-damage corn threshing based on DEM[J]. Computers and Electronics in Agriculture, 2022, 194: 106722. doi: 10.1016/j.compag.2022.106722
      [25]
      谢干, 张国忠, 付建伟, 等. 鼓形与圆柱形杆齿式纵轴流脱粒滚筒功耗对比试验[J]. 华中农业大学学报, 2021, 40(1): 202-209.
      [26]
      陈艳普, 康艳, 王廷恩, 等. 大豆收获机纵轴流柔性脱粒装置脱出物分布规律[J]. 中国农业大学学报, 2020, 25(9): 104-111. doi: 10.11841/j.issn.1007-4333.2020.09.11
      [27]
      中华人民共和国国家质量监督监督检验检疫局. 农业机械试验条件测定方法的一般规定: GB/T 5256—2008 [S]. 北京: 中国标准出版社, 2008.
      [28]
      农业部农业机械试验鉴定总站. 水稻联合收割机作业质量: GB/T 8097—2008[S]. 北京: 中国农业出版社, 2008.
    • Cited by

      Periodical cited type(5)

      1. 田思璐,袁羽,徐乐,欧阳萍,陈德芳,黄小丽,耿毅. 1株沼泽绿蛙源蛙病毒的分离鉴定及系统发育分析. 华中农业大学学报. 2025(02): 258-264 .
      2. 王庆朋,闫成才,王喆,苟长青,王兰,冯宏祖,郝海婷. 库尔勒香梨开花前后花药细菌多样性分析. 新疆农业科学. 2024(08): 1976-1982 .
      3. 龚保荣,吴红军,李本镇,徐大洋,邹文腾,曲君艺,鲍传和,朱若林. 患白内障病黑斑蛙米尔伊丽莎白菌的分离鉴定与PNGase基因克隆. 浙江农业学报. 2023(06): 1297-1306 .
      4. 程晓云,傅秋华,王卫东,郑善坚,张乃芳. 一株棘胸蛙源蛙病毒的分离与鉴定. 安徽农业科学. 2020(05): 100-102+105 .
      5. 杜嘉楠,吴晨薇,叶颖萱,文艺,李婧妍,李靖,翟博宇,朱晓艺,曾祥伟. 蛙类常见传染病介绍及病原学鉴定研究进展. 今日畜牧兽医. 2019(08): 63-64 .

      Other cited types(3)

    Catalog

      Article views (176) PDF downloads (379) Cited by(8)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return