GAO Ruichuan, HU Min, LI Fangbai, et al. Research progress and ecological function of phages in soil[J]. Journal of South China Agricultural University, 2022, 43(5): 1-11. DOI: 10.7671/j.issn.1001-411X.202205039
    Citation: GAO Ruichuan, HU Min, LI Fangbai, et al. Research progress and ecological function of phages in soil[J]. Journal of South China Agricultural University, 2022, 43(5): 1-11. DOI: 10.7671/j.issn.1001-411X.202205039

    Research progress and ecological function of phages in soil

    More Information
    • Received Date: May 19, 2022
    • Available Online: May 17, 2023
    • Phages play important roles in modulating microbial communities, and subsequently determining element circulation and pollutant transformation in the earth surface ecosystem. Compared with aquatic systems, the high heterogeneity of soil and the high adsorption of virus-like particles bring great challenges to the study of phages in soil, and leading to insufficient attention by far. In this review, the morphological and life cycle classification, extraction and analytic methods for phages in soil, were briefly summarized. In addition, the scientific linkage of phages in regulating soil microbial community structure and the cycle of life elements (e.g. carbon, nitrogen, phosphorus and sulfur) with the transformation of heavy metals (metalloid), were further discussed. The underlying biogeochemical mechanisms were revealed, and the ecological functions and environmental significances were clarified. Finally, the future research focuses of soil phages were prospected.

    • [1]
      王光华, 刘俊杰, 朱冬, 等. 土壤病毒的研究进展与挑战[J]. 土壤学报, 2020, 57(6): 1319-1332. doi: 10.11766/trxb202004280203
      [2]
      KIMURA M, JIA Z J, NAKAYAMA N, et al. Ecology of viruses in soils: Past, present and future perspectives[J]. Soil Science and Plant Nutrition, 2008, 54(1): 1-32. doi: 10.1111/j.1747-0765.2007.00197.x
      [3]
      SRINIVASIAH S, BHAVSAR J, THAPAR K, et al. Phages across the biosphere: Contrasts of viruses in soil and aquatic environments[J]. Research in Microbiology, 2008, 159(5): 349-357. doi: 10.1016/j.resmic.2008.04.010
      [4]
      PRATAMA A A, VAN ELSAS J D. The ‘Neglected’ soil virome: Potential role and impact[J]. Trends in Microbiology, 2018, 26(8): 649-662. doi: 10.1016/j.tim.2017.12.004
      [5]
      LEFKOWITZ E J, DEMPSEY D M, HENDRICKSON R C, et al. Virus taxonomy: The database of the International Committee on Taxonomy of Viruses (ICTV)[J]. Nucleic Acids Research, 2018, 46(D1): D708-D717. doi: 10.1093/nar/gkx932
      [6]
      PRANGISHVILI D, FORTERRE P, GARRETT R A. Viruses of the Archaea: A unifying view[J]. Nature Reviews Microbiology, 2006, 4(11): 837-848. doi: 10.1038/nrmicro1527
      [7]
      PIETILÄ M K, DEMINA T A, ATANASOVA N S, et al. Archaeal viruses and bacteriophages: Comparisons and contrasts[J]. Trends in Microbiology, 2014, 22(6): 334-344. doi: 10.1016/j.tim.2014.02.007
      [8]
      KING A M Q, LEFKOWITZ E, ADAMS M J, et al. Virus taxonomy: Ninth report of the International Committee on Taxonomy of Viruses [M]. Elsevier, 2012: 1211-1234.
      [9]
      PONS J C, PAEZ-ESPINO D, RIERA G, et al. VPF-Class: Taxonomic assignment and host prediction of uncultivated viruses based on viral protein families[J]. Bioinformatics, 2021, 37(13): 1805-1813. doi: 10.1093/bioinformatics/btab026
      [10]
      KUZYAKOV Y, MASON-JONES K. Viruses in soil: Nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions[J]. Soil Biology and Biochemistry, 2018, 127: 305-317. doi: 10.1016/j.soilbio.2018.09.032
      [11]
      CLOKIE M R J, MILLARD A D, LETAROV A V, et al. Phages in nature[J]. Bacteriophage, 2011, 1(1): 31-45. doi: 10.4161/bact.1.1.14942
      [12]
      MIRZAEI M K, MAURICE C F. Ménage à trois in the human gut: Interactions between host, bacteria and phages[J]. Nature Reviews Microbiology, 2017, 15(7): 397-408. doi: 10.1038/nrmicro.2017.30
      [13]
      WEINBAUER M G. Ecology of prokaryotic viruses[J]. FEMS Microbiology Reviews, 2004, 28(2): 127-181. doi: 10.1016/j.femsre.2003.08.001
      [14]
      SMEAL S W, SCHMITT M A, PEREIRA R R, et al. Simulation of the M13 life cycle I: Assembly of a genetically-structured deterministic chemical kinetic simulation[J]. Virology, 2017, 500: 259-274. doi: 10.1016/j.virol.2016.08.017
      [15]
      CENENS W, MAKUMI A, MEBRHATU M T, et al. Phage–host interactions during pseudolysogeny: Lessons from the Pid/dgo interaction[J]. Bacteriophage, 2013, 3(1): e1003269.
      [16]
      FEINER R, ARGOV T, RABINOVICH L, et al. A new perspective on lysogeny: Prophages as active regulatory switches of bacteria[J]. Nature Reviews Microbiology, 2015, 13(10): 641-650. doi: 10.1038/nrmicro3527
      [17]
      BRUM J R, HURWITZ B L, SCHOFIELD O, et al. Seasonal time bombs: Dominant temperate viruses affect Southern Ocean microbial dynamics[J]. The ISME Journal, 2016, 10(2): 437-449. doi: 10.1038/ismej.2015.125
      [18]
      WILLIAMS J G K, KUBELIK A R, LIVAK K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Research, 1990, 18(22): 6531-6535. doi: 10.1093/nar/18.22.6531
      [19]
      EMERSON J B, ROUX S, BRUM J R, et al. Host-linked soil viral ecology along a permafrost thaw gradient[J]. Nature Microbiology, 2018, 3(8): 870-880. doi: 10.1038/s41564-018-0190-y
      [20]
      GOORDIAL J, DAVILA A, GREER C W, et al. Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper‐arid polar desert[J]. Environmental Microbiology, 2017, 19(2): 443-458. doi: 10.1111/1462-2920.13353
      [21]
      VAN GOETHEM M W, SWENSON T L, TRUBL G, et al. Characteristics of wetting-induced bacteriophage blooms in biological soil crust[J]. mBio, 2019, 10(6): e02287-19.
      [22]
      SANTOS-MEDELLIN C, ZINKE L A, TER HORST A M, et al. Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities[J]. The ISME Journal, 2021, 15(7): 1956-1970. doi: 10.1038/s41396-021-00897-y
      [23]
      SCHOLZ M B, LO C C, CHAIN P S G. Next generation sequencing and bioinformatic bottlenecks: The current state of metagenomic data analysis[J]. Current Opinion in Biotechnology, 2012, 23(1): 9-15. doi: 10.1016/j.copbio.2011.11.013
      [24]
      韩丽丽, 于丹婷, 贺纪正. 土壤病毒生态学研究方法[J]. 生态学报, 2017, 37(6): 1749-1756.
      [25]
      GÖLLER P C, HARO-MORENO J M, RODRIGUEZ-VALERA F, et al. Uncovering a hidden diversity: Optimized protocols for the extraction of dsDNA bacteriophages from soil[J]. Microbiome, 2020, 8(17): 1-16.
      [26]
      TRUBL G, SOLONENKO N, CHITTICK L, et al. Optimization of viral resuspension methods for carbon-rich soils along a permafrost thaw gradient[J]. PeerJ, 2016, 4: e1999. doi: 10.7717/peerj.1999
      [27]
      THURBER R V, HAYNES M, BREITBART M, et al. Laboratory procedures to generate viral metagenomes[J]. Nature Protocols, 2009, 4(4): 470-483. doi: 10.1038/nprot.2009.10
      [28]
      CASTRO-MEJíA J L, MUHAMMED M K, KOT W, et al. Optimizing protocols for extraction of bacteriophages prior to metagenomic analyses of phage communities in the human gut[J]. Microbiome, 2015, 3(1): 1-14. doi: 10.1186/s40168-014-0066-1
      [29]
      TANG X, YU P, TANG L, et al. Bacteriophages from arsenic-resistant bacteria transduced resistance genes, which changed arsenic speciation and increased soil toxicity[J]. Environmental Science & Technology Letters, 2019, 6(11): 675-680.
      [30]
      HUANG D, YU P, YE M, et al. Enhanced mutualistic symbiosis between soil phages and bacteria with elevated chromium-induced environmental stress[J]. Microbiome, 2021, 9(1): 1-26. doi: 10.1186/s40168-020-00939-1
      [31]
      CHEN M L, AN X L, LIAO H, et al. Viral community and virus-associated antibiotic resistance genes in soils amended with organic fertilizers[J]. Environmental Science & Technology, 2021, 55(20): 13881-13890.
      [32]
      KALLIES R, HöLZER M, BRIZOLA TOSCAN R, et al. Evaluation of sequencing library preparation protocols for viral metagenomic analysis from pristine aquifer groundwaters[J]. Viruses, 2019, 11(6): 484. doi: 10.3390/v11060484
      [33]
      REGNAULT B, BIGOT T, MA L, et al. Deep impact of random amplification and library construction methods on viral metagenomics results[J]. Viruses, 2021, 13(2): 253. doi: 10.3390/v13020253
      [34]
      贺纪正, 袁超磊, 沈菊培, 等. 土壤宏基因组学研究方法与进展[J]. 土壤学报, 2012, 49(1): 155-164. doi: 10.11766/trxb201103180094
      [35]
      祁慧鹓, 郑晓璇, 孙明明, 等. 土壤宏病毒组的研究方法与进展[J]. 土壤学报, 2021, 58(3): 568-577. doi: 10.11766/trxb202008210474
      [36]
      BOLGER A M, LOHSE M, USADEL B. Trimmomatic: A flexible trimmer for illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120. doi: 10.1093/bioinformatics/btu170
      [37]
      LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with bowtie 2[J]. Nature Methods, 2012, 9(4): 357-359. doi: 10.1038/nmeth.1923
      [38]
      LI D, LIU C M, LUO R, et al. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics, 2015, 31(10): 1674-1676. doi: 10.1093/bioinformatics/btv033
      [39]
      KIEFT K, ZHOU Z, ANANTHARAMAN K. VIBRANT: Automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences[J]. Microbiome, 2020, 8(90): 1-23.
      [40]
      FU L, NIU B, ZHU Z, et al. CD-HIT: Accelerated for clustering the next-generation sequencing data[J]. Bioinformatics, 2012, 28(23): 3150-3152. doi: 10.1093/bioinformatics/bts565
      [41]
      ZOLFO M, PINTO F, ASNICAR F, et al. Detecting contamination in viromes using ViromeQC[J]. Nature Biotechnology, 2019, 37(12): 1408-1412. doi: 10.1038/s41587-019-0334-5
      [42]
      WOOD D E, LU J, LANGMEAD B. Improved metagenomic analysis with Kraken 2[J]. Genome Biology, 2019, 20(1): 1-13. doi: 10.1186/s13059-018-1612-0
      [43]
      ROUX S, ENAULT F, HURWITZ B L, et al. VirSorter: Mining viral signal from microbial genomic data[J]. PeerJ, 2015, 3: e985. doi: 10.7717/peerj.985
      [44]
      HYATT D, CHEN G L, LOCASCIO P F, et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification[J]. BMC Bioinformatics, 2010, 11(1): 1-11. doi: 10.1186/1471-2105-11-1
      [45]
      SHAFFER M, BORTON M A, MCGIVERN B B, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function[J]. Nucleic Acids Research, 2020, 48(16): 8883-8900. doi: 10.1093/nar/gkaa621
      [46]
      ROUX S, ADRIAENSSENS E M, DUTILH B E, et al. Minimum information about an uncultivated virus genome (MIUViG)[J]. Nature Biotechnology, 2018, 37(1): 29-37.
      [47]
      BERGH Ø, BØRSHEIM K Y, BRATBAK G, et al. High abundance of viruses found in aquatic environments[J]. Nature, 1989, 340(6233): 467-468. doi: 10.1038/340467a0
      [48]
      PROCTOR L M, FUHRMAN J A. Viral mortality of marine bacteria and cyanobacteria[J]. Nature, 1990, 343(6253): 60-62. doi: 10.1038/343060a0
      [49]
      GRAHAM E B, PAEZ-ESPINO D, BRISLAWN C, et al. Untapped viral diversity in global soil metagenomes[J/OL]. BioRxiv, [2019-04-26]. https://doi.org/10.1101/583997.
      [50]
      ŁUSIAK-SZELACHOWSKA M, WEBER-DĄBROWSKA B, JOŃCZYK-MATYSIAK E, et al. Bacteriophages in the gastrointestinal tract and their implications[J]. Gut Pathogens, 2017, 9(1): 1-5. doi: 10.1186/s13099-016-0151-z
      [51]
      SANTIAGO-RODRIGUEZ T M, FORNACIARI G, LUCIANI S, et al. Natural mummification of the human gut preserves bacteriophage DNA[J]. FEMS Microbiology Letters, 2016, 363(1): fnv219.
      [52]
      陈莫莲, 安新丽, 杨凯, 等. 土壤噬菌体及其介导的抗生素抗性基因水平转移研究进展[J]. 应用生态学报, 2021, 32(6): 2267-2274.
      [53]
      FIERER N. Embracing the unknown: Disentangling the complexities of the soil microbiome[J]. Nature Reviews Microbiology, 2017, 15(10): 579-590. doi: 10.1038/nrmicro.2017.87
      [54]
      ASHELFORD K E, DAY M J, BAILEY M J, et al. In situ population dynamics of bacterial viruses in a terrestrial environment[J]. Applied and Environmental Microbiology, 1999, 65(1): 169-174. doi: 10.1128/AEM.65.1.169-174.1999
      [55]
      ASHELFORD K E, NORRIS S J, FRY J C, et al. Seasonal population dynamics and interactions of competing bacteriophages and their host in the rhizosphere[J]. Applied and Environmental Microbiology, 2000, 66(10): 4193-4199. doi: 10.1128/AEM.66.10.4193-4199.2000
      [56]
      CHEVALLEREAU A, PONS B J, VAN HOUTE S, et al. Interactions between bacterial and phage communities in natural environments[J]. Nature Reviews Microbiology, 2021, 20(1): 49-62.
      [57]
      THINGSTAD T F. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems[J]. Limnology and Oceanography, 2000, 45(6): 1320-1328. doi: 10.4319/lo.2000.45.6.1320
      [58]
      CHEN X, WEINBAUER M G, JIAO N, et al. Revisiting marine lytic and lysogenic virus-host interactions: Kill-the-winner and piggyback-the-winner[J]. Science Bulletin, 2021, 66(9): 871-874. doi: 10.1016/j.scib.2020.12.014
      [59]
      WILLIAMSON K E, FUHRMANN J J, WOMMACK K E, et al. Viruses in soil ecosystems: An unknown quantity within an unexplored territory[J]. Annual Review of Virology, 2017, 4(1): 201-219. doi: 10.1146/annurev-virology-101416-041639
      [60]
      YE M, SUN M, HUANG D, et al. A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment[J]. Environment International, 2019, 129: 488-496. doi: 10.1016/j.envint.2019.05.062
      [61]
      叶茂, 孙明明, 黄丹, 等. 噬菌体疗法在土壤环境系统中靶向灭活致病细菌的研究进展[J]. 土壤, 2020, 52(2): 213-222. doi: 10.13758/j.cnki.tr.2020.02.001
      [62]
      崔自红, 季秀玲. 细菌−噬菌体对抗性共进化研究进展[J]. 中国生物工程杂志, 2020, 40(1/2): 140-145.
      [63]
      SOKOL N W, SLESSAREV E, MARSCHMANN G L, et al. Life and death in the soil microbiome: How ecological processes influence biogeochemistry[J]. Nature Reviews Microbiology, 2022, 20: 415-430.
      [64]
      WILHELM S W, SUTTLE C A. Viruses and nutrient cycles in the sea: Viruses play critical roles in the structure and function of aquatic food webs[J]. Bioscience, 1999, 49(10): 781-788. doi: 10.2307/1313569
      [65]
      BRUSSAARD C P D, WILHELM S W, THINGSTAD F, et al. Global-scale processes with a nanoscale drive: The role of marine viruses[J]. The ISME Journal, 2008, 2(6): 575-578. doi: 10.1038/ismej.2008.31
      [66]
      WEI X, GE T, WU C, et al. T4-like phages reveal the potential role of viruses in soil organic matter mineralization[J]. Environmental Science & Technology, 2021, 55(9): 6440-6448.
      [67]
      BRAGA L P P, SPOR A, KOT W, et al. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios[J]. Microbiome, 2020, 8(52): 1-14.
      [68]
      GAO S M, SCHIPPERS A, CHEN N, et al. Depth-related variability in viral communities in highly stratified sulfidic mine tailings[J]. Microbiome, 2020, 8(89): 1-13.
      [69]
      KIEFT K, ZHOU Z, ANDERSON R E, et al. Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages[J]. Nature Communications, 2021, 12(1): 1-16. doi: 10.1038/s41467-020-20314-w
      [70]
      WALLER A S, YAMADA T, KRISTENSEN D M, et al. Classification and quantification of bacteriophage taxa in human gut metagenomes[J]. The ISME Journal, 2014, 8(7): 1391-1402. doi: 10.1038/ismej.2014.30
      [71]
      HELSLEY K R, BROWN T M, FURLONG K, et al. Applications and limitations of tea extract as a virucidal agent to assess the role of phage predation in soils[J]. Biology and Fertility of Soils, 2014, 50(2): 263-274. doi: 10.1007/s00374-013-0855-x
      [72]
      SUBIRATS J, SÀNCHEZ-MELSIÓ A, BORREGO C M, et al. Metagenomic analysis reveals that bacteriophages are reservoirs of antibiotic resistance genes[J]. International Journal of Antimicrobial Agents, 2016, 48(2): 163-167. doi: 10.1016/j.ijantimicag.2016.04.028
      [73]
      BONNAIN C, BREITBART M, BUCK K N. The Ferrojan horse hypothesis: Iron-virus interactions in the ocean[J]. Frontiers in Marine Science, 2016, 3: 82.
      [74]
      MURATORE D, WEITZ J S. Infect while the iron is scarce: Nutrient-explicit phage-bacteria games[J]. Theoretical Ecology, 2021, 14(3): 467-487. doi: 10.1007/s12080-021-00508-8
      [75]
      GAO S, PAEZ-ESPINO D, LI J, et al. Patterns and ecological drivers of viral communities in acid mine drainage sediments across Southern China[J]. Nature Communications, 2022, 13(1): 1-12. doi: 10.1038/s41467-021-27699-2
      [76]
      CORREA A M S, HOWARD-VARONA C, COY S R, et al. Revisiting the rules of life for viruses of microorganisms[J]. Nature Reviews Microbiology, 2021, 19(8): 501-513. doi: 10.1038/s41579-021-00530-x
    • Cited by

      Periodical cited type(13)

      1. 孙雅楠,刘亚静,孙钊,罗蜜,张运根,孙玉军. 将乐国有林场杉木径向生长及其对气候的响应. 北京林业大学学报. 2024(02): 18-27 .
      2. 刘士玲,杨保国,郑路,舒韦维,闵惠琳,张培,李华,杨坤,周炳江,田祖为. 广西红锥人工林径向生长的季节格局及其对气候因子的响应. 植物生态学报. 2024(08): 1021-1034 .
      3. 刘士玲,杨保国,郑路,张培,庞圣江,陈琳,闵惠琳,舒韦维,田祖为,黄荣. 红锥树干径向水分亏缺对饱和水汽压差的时滞响应. 中南林业科技大学学报. 2024(09): 94-104 .
      4. 徐军亮,候佳玉,毋彤,翟乐鑫,罗鹏飞,卫苗,章异平. 4个环孔材树种木质部年内生长动态及与气候因子的关系. 浙江农林大学学报. 2024(06): 1105-1113 .
      5. 陈佳佳,周梅,赵鹏武,许重阳,石亮,宝虎,刘艳军,曹光明. 内蒙古罕山华北落叶松径向生长特征及水热环境响应. 林业科学研究. 2023(04): 50-58 .
      6. 曾林辉,周蕾,寇亮,迟永刚. 基于生长测量仪监测的亚热带地区马尾松多时间尺度径向变化及其与环境因子的关系. 生态学报. 2023(16): 6637-6648 .
      7. 冯婷华,郭晋平,常建国. 中条山辽东栎优势木径向生长的时空变异特征. 山西农业科学. 2022(04): 559-567 .
      8. 闵惠琳,郑路,张继辉,刘士玲,李华,舒韦维,马俊旭,杨坤,韦菊玲. 2020–2021年南亚热带优势树种树干液流数据集. 中国科学数据(中英文网络版). 2022(03): 316-323 .
      9. 陈佳佳,周梅,赵鹏武,石亮,许重阳,王满才. 内蒙古大兴安岭南段山杨径向变化特征. 东北林业大学学报. 2022(12): 25-30 .
      10. 刘士玲,郑路,韦菊玲,杨保国,张培,闵惠琳,张继辉,姚建峰,杨文娟. 降雨条件下红椎树干直径微变化特征. 南方农业学报. 2021(06): 1625-1632 .
      11. 罗创福,李万年,邓冬莲,杜旭,杨梅,梁燕芳. 不同修枝强度对红锥马尾松混交林幼林生长及光环境的影响. 北华大学学报(自然科学版). 2021(05): 665-671 .
      12. 孟盛旺,杨风亭,戴晓琴,王辉民. 杉木径向生长动态及其对季节性干旱的响应. 应用生态学报. 2021(10): 3521-3530 .
      13. 杨嘉麒,邓海燕,张港隆,胡中洋,莫晓勇. 4种混交比例对桉树-红椎人工混交林生长和土壤养分的影响. 中南林业科技大学学报. 2021(11): 90-97 .

      Other cited types(1)

    Catalog

      Article views (600) PDF downloads (735) Cited by(14)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return