Citation: | LÜ Enli, YAN Bin, WANG Yu, et al. Removal performance and optimization of particulate matter from the waste gas treatment system using water scrubber in livestock and poultry houses[J]. Journal of South China Agricultural University, 2023, 44(2): 296-303. DOI: 10.7671/j.issn.1001-411X.202205014 |
A large amount of particulate matter, absorbed odor components and microorganisms discharged from livestock and poultry houses will cause serious damage to the atmospheric environment and health of surrounding person. Reducing the concentration of particulate matter in emissions is one of the core objectives of the emission purification technology at the end of livestock and poultry houses.
This paper focused on the particulate matter removal performance of the horizontal water spray purification technology at the end of livestock and poultry houses. An orthogonal test scheme was designed and carried out on a self-built horizontal water spray system particle purification efficiency test platform. The range analysis and variance analysis methods were employed to analyze the influence of key control parameters such as ventilation air speed, nozzle pressure, nozzle rated orifice diameter and nozzle atomization angle on the purification efficiency of PM2.5 and PM10 particles, and the optimal control parameter combination for different particle size was obtained using a parameter optimization model.
The results showed that the order of the control parameters affecting PM2.5 purification efficiency was nozzle pressure>ventilation air speed>nozzle rated orifice diameter>nozzle atomization angle; And the order of the control parameters affecting PM10 purification efficiency was nozzle pressure>nozzle rated orifice diameter>nozzle atomization angle>ventilation air speed. According to the optimized solution, the optimal control parameter combination was that the ventilation speed was 1.5 m/s, the nozzle pressure was 60 kPa, the rated nozzle orifice diameter was 11.1 mm, and the nozzle atomization angle was 120°. The results of validation test showed that the purification efficiencies of PM10 and and PM2.5 of the optimal control parameter combination were 40.4% and 41.1% respectively.
The findings can provide a reference for the design and operation parameter regulation of particulate matter purification equipment at the end of livestock and poultry houses.
[1] |
郭丽, 王春, 马淑丽, 等. 机械通风式笼养鸡舍内外颗粒物特征与影响因素分析[J]. 农业机械学报, 2018, 49(1): 276-282. doi: 10.6041/j.issn.1000-1298.2018.01.034
|
[2] |
戴鹏远, 沈丹, 唐倩, 等. 畜禽养殖场颗粒物污染特征及其危害呼吸道健康的研究进展[J]. 中国农业科学, 2018, 51(16): 3214-3225. doi: 10.3864/j.issn.0578-1752.2018.16.017
|
[3] |
WINKEL A, MOSQUERA J, KOERKAMP P W G G, et al. Emissions of particulate matter from animal houses in the Netherlands[J]. Atmospheric Environment, 2015, 111: 202-212. doi: 10.1016/j.atmosenv.2015.03.047
|
[4] |
SANTONJA G G, GEORGITZIKIS K, SCALET B M, et al. Best available techniques (BAT) reference document for the intensive rearing of poultry or pigs: EUR 28674 EN[R]. Brussels: European Commission, 2017.
|
[5] |
吴胜, 沈丹, 唐倩, 等. 规模化半封闭式猪场舍内颗粒物、氨气和二氧化碳分布规律[J]. 畜牧与兽医, 2018, 50(3): 30-38.
|
[6] |
PU S, PENG S, ZHU J, et al. Characteristics of PM2.5 and its correlation with feed, manure and NH3 in a pig-fattening house[J]. Toxics, 2022, 10(145): 1-17. doi: 10.3390/toxics10030145
|
[7] |
SHEN D, WU S, LI Z, et al. Distribution and physicochemical properties of particulate matter in swine confinement barns[J]. Environmental Pollution, 2019, 250: 746-753. doi: 10.1016/j.envpol.2019.04.086
|
[8] |
KWON K, LEE I, HA T. Identification of key factors for dust generation in a nursery pig house and evaluation of dust reduction efficiency using a CFD technique[J]. Biosystems Engineering, 2016, 151: 28-52. doi: 10.1016/j.biosystemseng.2016.08.020
|
[9] |
CONTI C, TULLO E, BACENETTI J, et al. Evaluation of a wet acid scrubber and dry filter abatement technologies in pig barns by dynamic olfactometry[J]. Applied Sciences, 2021, 11(7): 3219. doi: 10.3390/app11073219
|
[10] |
GUO L, ZHAO B, JIA Y, et al. Mitigation strategies of air pollutants for mechanical ventilated livestock and poultry housing: A review[J]. Atmosphere, 2022, 13(3): 452. doi: 10.3390/atmos13030452
|
[11] |
UNION P. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe[J]. Official Journal of the European Union, 2008, 51: 1-44.
|
[12] |
World Health Organization. Air quality guidelines: Global update 2005: Particulate matter, ozone, nitrogen dioxide, and sulfur dioxide[M]. Geneva: Switzerland World Health Organization, 2006.
|
[13] |
WANG Y C, HAN M F, JIA T P, et al. Emissions, measurement, and control of odor in livestock farms: A review[J]. Science of the Total Environment, 2021, 776: 145735. doi: 10.1016/j.scitotenv.2021.145735
|
[14] |
CONTI C, COSTANTINI M, FUSI A, et al. Environmental impact of pig production affected by wet acid scrubber as mitigation technology[J]. Sustainable Production and Consumption, 2021, 28: 580-590. doi: 10.1016/j.spc.2021.06.024
|
[15] |
COSTANTINI M, BACENETTI J, COPPOLA G, et al. Improvement of human health and environmental costs in the European Union by air scrubbers in intensive pig farming[J]. Journal of Cleaner Production, 2020, 275: 124007. doi: 10.1016/j.jclepro.2020.124007
|
[16] |
PONGKUA W, THIRAVETYAN P, DUMONT E. New tool for the determination of the nitrogen accumulation rate in the washing liquid of a biotrickling filter treating ammonia emissions[J]. Chemical Engineering Journal, 2020, 397: 125399. doi: 10.1016/j.cej.2020.125399
|
[17] |
HAN M F, WANG C, LIU H. Comparison of physical technologies for biomass control in biofilters treating gaseous toluene[J]. Journal of the Air & Waste Management Association, 2018, 68(10): 1118-1125.
|
[18] |
MANUZON R B, ZHAO L Y, KEENER H M, et al. A prototype acid spray scrubber for absorbing ammonia emissions from exhaust fans of animal buildings[J]. Transactions of the ASABE, 2007, 50(4): 1395-1407. doi: 10.13031/2013.23628
|
[19] |
JAFARI M J, MATIN A H, RAHMATI A, et al. Experimental optimization of a spray tower for ammonia removal[J]. Atmospheric Pollution Research, 2018, 9(4): 783-790. doi: 10.1016/j.apr.2018.01.014
|
[20] |
李保明, 王阳, 郑炜超, 等. 畜禽养殖智能装备与信息化技术研究进展[J]. 华南农业大学学报, 2021, 42(6): 18-26.
|
[21] |
MELSE R W, HOFSCHREUDER P, OGINK N W M. Removal of particulate matter (PM10) by air scrubbers at livestock facilities: Results of an on-farm monitoring program[J]. Transactions of the ASABE, 2012, 55(2): 689-698. doi: 10.13031/2013.41378
|
[22] |
郭建斌, 牛红林, 韩玉花, 等. 基于 PLC 的养殖场氨气生物氧化装置设计与试验[J]. 农业机械学报, 2017, 48(3): 310-316. doi: 10.6041/j.issn.1000-1298.2017.03.039
|
[23] |
李世才, 高子翔, 李森, 等. 畜禽舍空气净化器的设计[J]. 家畜生态学报, 2017, 38(1): 52-54. doi: 10.3969/j.issn.1673-1182.2017.01.010
|
[24] |
王昱, 吴鹏, 曾志雄, 等. 规模化猪舍废气复合净化系统设计与试验[J]. 农业机械学报, 2020, 51(4): 344-352. doi: 10.6041/j.issn.1000-1298.2020.04.039
|
[25] |
王卫红, 刘双红, 任永鑫, 等. 北方规模化猪场周围环境空气中PM10的监测分析[J]. 中国兽医杂志, 2015, 51(12): 95-97. doi: 10.3969/j.issn.0529-6005.2015.12.034
|
[26] |
梅玮, 祁巨中, 刘英玉, 等. 新疆北疆地区某集约化肉牛养殖场春季环境指标评价[J]. 中国畜牧兽医, 2015, 42(7): 1738-1746. doi: 10.16431/j.cnki.1671-7236.2015.07.018
|
[27] |
唐倩, 戴鹏远, 吴胜, 等. 猪舍颗粒物对肺泡巨噬细胞功能的影响[J]. 畜牧兽医学报, 2018, 49(10): 2092-2101. doi: 10.11843/j.issn.0366-6964.2018.10.005
|
[28] |
王昱, 牟剑, 曾志雄, 等. 猪舍废气净化系统填料结构多目标拓扑优化设计与试验[J]. 农业机械学报, 2021, 52(7): 329-334. doi: 10.6041/j.issn.1000-1298.2021.07.035
|
[29] |
RUIZ J, KAISER A S, LUCAS M. Experimental determination of drift and PM10 cooling tower emissions: Influence of components and operating conditions[J]. Environmental Pollution, 2017, 230: 422-431. doi: 10.1016/j.envpol.2017.06.073
|
[30] |
王颉. 试验设计与SPSS应用[M]. 北京: 化学工业出版社, 2006.
|
[31] |
许稳, 刘学军, 孟令敏, 等. 不同养殖阶段猪舍氨气和颗粒物污染特征及其动态[J]. 农业环境科学学报, 2018, 37(6): 1248-1254. doi: 10.11654/jaes.2017-1440
|
[32] |
陆至羚, 柳建华, 张良, 等. 静电喷雾湿式金属填料复合过滤性能[J]. 燃烧科学与技术, 2015, 21(4): 340-345.
|
[33] |
NIELSEN M T, LIVBJERG H, FOGH C L, et al. Formation and emission of fine particles from two coal-fired power plants[J]. Combustion Science and Technology, 2002, 174(2): 79-113. doi: 10.1080/714922606
|
[34] |
鲍静静, 刘杭, 潘京, 等. 石灰石−石膏法脱硫烟气PM2.5排放特性[J]. 热力发电, 2014, 43(10): 1-7. doi: 10.3969/j.issn.1002-3364.2014.10.001
|
[1] | NI Chunhui, LI Huixia, LIU Yonggang, HAN Bian, SHI Mingming, WEI Xuejuan, LI Wenhao, XU Xuefen. Identification and description of Ditylenchus arachis from Codonopsis pilosula in Gansu Province[J]. Journal of South China Agricultural University, 2022, 43(4): 99-105. DOI: 10.7671/j.issn.1001-411X.202111034 |
[2] | WANG Chong, WANG Lianjun, TIAN Xiaohai, LEI Jian, CHAI Shasha, JIAO Chunhai, YANG Xinsun. Analyses of Ipomoea batatas cultivated species and wild relatives based on mtDNA and cpDNA sequences[J]. Journal of South China Agricultural University, 2021, 42(4): 25-32. DOI: 10.7671/j.issn.1001-411X.202011026 |
[3] | GUO Qiu, DANG Fang, HE Zhan, REN Shunxiang, QIU Baoli. A development and morphological comparison between Eretmocerus furuhashii and Encarsia bimaculata[J]. Journal of South China Agricultural University, 2015, 36(5): 80-84. DOI: 10.7671/j.issn.1001-411X.2015.05.014 |
[4] | WANG Yanjing, CEN Yijing, JIANG Hongyan, LUO Xiaozhu, DENG Xiaoling, XIA Yulu. Identification of haplotypes of Cacopsylla citrisuga from Yunnan Province based on mitochondria COI sequence[J]. Journal of South China Agricultural University, 2015, 36(4): 81-86. DOI: 10.7671/j.issn.1001-411X.2015.04.015 |
[5] | GUO Jun, CEN Yi-jing, WANG Zi-ran, DUAN Hui-fen, XIA Yu-lu, GAO Jun-yan. A Study on the Morphology, Biology and Occurrence of Cacopsylla citrisuga[J]. Journal of South China Agricultural University, 2012, 33(4): 475-479. DOI: 10.7671/j.issn.1001-411X.2012.04.010 |
[6] | LI Hai-yi, REN Tai-jun, LIU Hai-yuan, ZHONG Guo-hua. Abnormal Morphological Development of Drosophilia melanogaster Compound Eyes Induced by Azadirachtin[J]. Journal of South China Agricultural University, 2012, 33(3): 331-335. DOI: 10.7671/j.issn.1001-411X.2012.03.012 |
[7] | OU You-jun, LIAO Rui, LI Jia-er, LI Liu-dong, GOU Xiao-wei. Comparison of Morphological Characteristics of Otolith in Four Sciaenid Fishes[J]. Journal of South China Agricultural University, 2012, 33(2): 203-210. DOI: 10.7671/j.issn.1001-411X.2012.02.018 |
[8] | Taxonomic Status of Parnara batta Evans (Lepidoptera:Hesperiidae) Inferred from Mitochondrial COI Gene Sequences[J]. Journal of South China Agricultural University, 2010, 31(2). DOI: 10.7671/j.issn.1001-411X.2010.02.012 |
[9] | Molecular Phylogenetic Studies of Osteoglossidae Based on the Sequences of Complete Mitochondrial Cytochrome b Gene[J]. Journal of South China Agricultural University, 2010, 31(2). DOI: 10.7671/j.issn.1001-411X.2010.02.024 |
[10] | PENG Gui-xiang~1,CHEN Wen-xin~2,TAN Zhi-yuan~3. Identification and phylogenetic analysis of closely related rhizobium species by rRNA gene intergenic spacer sequence[J]. Journal of South China Agricultural University, 2004, 25(4): 58-62. DOI: 10.7671/j.issn.1001-411X.2004.04.015 |