• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
JIA Rongrong, WANG Xiangbin, JIA Kun. Whole genome sequencing and evolutionary analysis of bovine ephemeral fever virus isolate JM 2020 in Guangdong Province[J]. Journal of South China Agricultural University, 2023, 44(3): 382-390. DOI: 10.7671/j.issn.1001-411X.202204028
Citation: JIA Rongrong, WANG Xiangbin, JIA Kun. Whole genome sequencing and evolutionary analysis of bovine ephemeral fever virus isolate JM 2020 in Guangdong Province[J]. Journal of South China Agricultural University, 2023, 44(3): 382-390. DOI: 10.7671/j.issn.1001-411X.202204028

Whole genome sequencing and evolutionary analysis of bovine ephemeral fever virus isolate JM 2020 in Guangdong Province

More Information
  • Received Date: April 16, 2022
  • Available Online: May 17, 2023
  • Objective 

    The purpose of this study was to analyze the evolutionary relationship between bovine ephemeral fever virus (BEFV) isolate JM 2020 in Guangdong Province and other strains from other regions, and clarify the characteristics of genetic evolution and whole genome, so as to provide information for the epidemic situation and prevention of bovine ephemeral fever disease in China and the world.

    Method 

    According to the whole genome sequence information of BEFV strain downloaded from GenBank, primers were designed to amplify glycoprotein (G) gene by PCR. The 10 pairs of primers were designed to amplify the whole genome, and the gene sequences of 10 fragments were obtained by sequencing. The whole genome sequences were manually edited and spliced by EditSeq in DNAStar software. Using MEGA 6.0 to construct G gene and whole genome evolutionary tree respectively for evolutionary analysis.

    Result 

    The G gene and whole genome of the JM 2020 strain had the highest nucleotide sequence similarity with the Thai strain, which were 94.9%−99.3% and 99.0% respectively. The evolutionary analysis showed that JM 2020 was in the same small branch with the 2013 to 2017 Thai strains, while there was a certain evolutionary distance from domestic virus strains such as JB76H and JT02L. Whole genome sequencing results showed that whole genome of JM 2020 was 14 902 nucleotides (nt) in length, including 50 nt leader sequence, 1 296 nt nucleoprotein (N) gene, and 837 nt phosphoprotein (P) gene, 672 nt matrixprotein (M) gene, 1 872 nt G gene, 1 812 nt non-structural glycoprotein II (GNS) gene, 618 nt α1 and α2 gene, 444 nt β gene, 345 nt γ gene, 6 444 nt large multi-functional enzyme (L) gene and tail sequence of 73 nt, which was separated by 21, 47, 68, 67, 23, 64, 59, 79 and 35 nt intergenic regions. The P′ gene (polycistronic product of P gene) of JM 2020 was truncated like qy2017 and the Thai strain.

    Conclusion 

    The JM 2020 strain is highly similar with the qy2017 strain isolated in 2017 and they are closely related to the evolution of the Thai strain. They have some evolutionary distance with JB76H strain etc. from other regions of China. This study enriches the genome information of BEFV epidemic strains in China and lays a foundation for the prevention and control of bovine ephemeral fever and the research of new vaccines.

  • [1]
    WALKER P J. Bovine ephemeral fever in Australia and the world[J]. Current Topics in Microbiology and Immunology, 2005, 292: 57-80.
    [2]
    刘和斯. 牛流行热的临床特点、症状及防治措施[J]. 畜禽业, 2021, 32(10): 139.
    [3]
    LEE F. Bovine ephemeral fever in Asia: Recent status and research gaps[J]. Viruses, 2019, 11(5): 412. doi: 10.3390/v11050412.
    [4]
    JIA K, JIA R R, WANG X B, et al. Genetic characterization of bovine ephemeral fever virus in southern China, 2013−2017[J]. Virus Genes, 2020, 56(3): 390-395. doi: 10.1007/s11262-020-01740-w
    [5]
    LIN G Z, QIU C Q. Phylogenetic relationships of the partial G gene sequence of bovine ephemeral fever virus isolated from Mainland China, Taiwan, Japan, Australia, Turkey and Israel[J]. Journal of Animal and Veterinary Advances, 2012, 11(17): 3217-3222. doi: 10.3923/javaa.2012.3217.3222
    [6]
    STOKES J E, DARPEL K E, GUBBINS S, et al. Investigation of bovine ephemeral fever virus transmission by putative dipteran vectors under experimental conditions[J]. Parasites & Vectors, 2020, 13(1): 597. doi: 10.1186/s13071-020-04485-5.
    [7]
    李成, 谷守林, 姜绍德, 等. 应用电镜技术对牛流行热病毒形态学的研究[J]. 电子显微学报, 1993(1): 35.
    [8]
    江船. 牛流行热病毒感染宿主细胞差异表达miRNA的筛选及其鉴定[D]. 济南: 山东大学, 2018.
    [9]
    LIU D, LI K, ZHANG L, et al. Seroprevalence investigation of bovine ephemeral fever in yaks in Tibetan Plateau of China from 2012 to 2015[J]. Tropical Animal Health and Production, 2017, 49(1): 227-230. doi: 10.1007/s11250-016-1172-9
    [10]
    LI Z, ZHENG F, GAO S, et al. Large-scale serological survey of bovine ephemeral fever in China[J]. Veterinary Microbiology, 2015, 176(1/2): 155-160.
    [11]
    汪祥斌, 贾坤, 贾荣荣, 等. 牛流行热病毒TaqMan实时定量PCR检测方法的建立及应用[J]. 中国兽医学报, 2020, 40(3): 491-495.
    [12]
    WANG F I, HSU A M, HUANG K J. Bovine ephemeral fever in Taiwan[J]. Journal of Veterinary Diagnostic Investigation, 2001, 13(6): 462-467. doi: 10.1177/104063870101300602
    [13]
    TRINIDAD L, BLASDELL K R, JOUBERT D A, et al. Evolution of bovine ephemeral fever virus in the Australian episystem[J]. Journal of Virology, 2014, 88(3): 1525-1535. doi: 10.1128/JVI.02797-13
    [14]
    CHAISIRIRAT T, SANGTHONG P, ARUNVIPAS P, et al. Molecular characterization of bovine ephemeral fever virus in Thailand between 2013 and 2017[J]. Veterinary Microbiology, 2018, 227: 1-7. doi: 10.1016/j.vetmic.2018.10.013
    [15]
    童树喜. 牛流行热的流行病学调查及防治[J]. 中国畜牧业, 2021(5): 72-73. doi: 10.3969/j.issn.2095-2473.2021.05.035
    [16]
    WALKER P J, KLEMENT E. Epidemiology and control of bovine ephemeral fever[J]. Veterinary Research, 2015, 46: 124. doi: 10.1186/s13567-015-0262-4.
    [17]
    ZHENG F, QIU C. Phylogenetic relationships of the glycoprotein gene of bovine ephemeral fever virus isolated from mainland China, Taiwan, Japan, Turkey, Israel and Australia[J]. Virology Journal, 2012, 9: 268. doi: 10.1186/1743-422X-9-268.
    [18]
    AZIZ-BOARON O, KLAUSNER Z, HASOKSUZ M, et al. Circulation of bovine ephemeral fever in the Middle East: Strong evidence for transmission by winds and animal transport[J]. Veterinary Microbiology, 2012, 158(3/4): 300-307.
    [19]
    杨金雨, 李赞, 王丹. 重新认识牛流行热及其疫苗[J]. 中国奶牛, 2018(5): 47-49.
  • Cited by

    Periodical cited type(2)

    1. 吕永东. 基于机器深度学习的小麦条播机双变量施肥控制方法. 中国农机装备. 2025(05): 108-111 .
    2. 郑金江. 基于VOSviewer无公害栽培技术的多维分析——发展、应用与新的挑战. 绿色科技. 2024(05): 161-167 .

    Other cited types(0)

Catalog

    Article views (80) PDF downloads (22) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return