Citation: | LI Yaxue, PAN Yaoliang, PENG Guangfen, et al. Functional characterization of phosphorus deficiency-responsive GmNTLs in soybean roots[J]. Journal of South China Agricultural University, 2023, 44(2): 221-229. DOI: 10.7671/j.issn.1001-411X.202204026 |
Low phosphorus (P) availability and aluminum (Al) toxicity constrain crop production in acid soils. NTL transcription factors play an important role in the mechanisms of plant response to various abiotic stresses, including Al toxicity. This study focused on analyzing the function of GmNTLs in soybean roots responding to P deficiency.
Expression pattern were performed on 15 members of the GmNTL family in the soybean by RT-qPCR assays. We further investigated the function of some GmNTLs members in adaptation to low P by overexpressing the genes of GmNTL1/4/7/8/10/12 in Arabidopsis thaliana.
The phylogenetic analysis and the tissue expression analysis of each subfamily members revealed that 15 GmNTLs were divided into three subgroups and different GmNTL family members had different tissue expression pattern in soybean. The RT-qPCR results showed that the expression levels of GmNTL1/4/7/8/10/12 in soybean roots significantly increased after 12 days of low P treatment. Overexpression of different GmNTLs in Arabidopsis showed different responses to low P. The fresh weight of transgenic Arabidopsis overexpressing GmNTL4/10/12 significantly increased compared to control lines under high P treatment. Overexpression of GmNTL4 significantly improved fresh weight of transgenic Arabidopsis plant under low P deficiency; Whereas, the plant fresh weight of transgene lines overexpressing GmNTL1/12 significantly decreased. Overexpression of GmNTL12 reduced the primary root length of transgenic plants; Whereas, overexpression of other GmNTLs had no significant effect on primary root length.
GmNTLs involve in the response of soybean roots to low P stress, and these results can provide a theoretical basis for cultivating soybean varieties with high P efficiency.
[1] |
OOKA H, SATOH K, DOI K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Research, 2003, 10(6): 239-247. doi: 10.1093/dnares/10.6.239
|
[2] |
KIM S Y, KIM S G, KIM Y S, et al. Exploring membrane-associated NAC transcription factors in Arabidopsis: Implications for membrane biology in genome regulation[J]. Nucleic Acids Research, 2007, 35(1): 203-213. doi: 10.1093/nar/gkl1068
|
[3] |
赵翠珠, 刘振华, 赵赫, 等. 植物NAC膜结合转录因子的研究进展[J]. 生命科学, 2012, 24(1): 74-80.
|
[4] |
CHI Y H, MELENCION S, ALINAPON C V, et al. The membrane-tethered NAC transcription factor, AtNTL7, contributes to ER-stress resistance in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2017, 488(4): 641-647. doi: 10.1016/j.bbrc.2017.01.047
|
[5] |
ZHAO J, LIU J S, MENG F N, et al. ANAC005 is a membrane-associated transcription factor and regulates vascular development in Arabidopsis[J]. Journal of Integrative Plant Biology, 2016, 58(5): 442-451. doi: 10.1111/jipb.12379
|
[6] |
WANG D, YU Y, LIU Z, et al. Membrane-bound NAC transcription factors in maize and their contribution to the oxidative stress response[J]. Plant Science, 2016, 250: 30-39. doi: 10.1016/j.plantsci.2016.05.019
|
[7] |
KIM M J, PARK M, SEO P J, et al. Controlled nuclear import of the transcription factor NTL6 reveals a cytoplasmic role of SnRK2.8 in the drought-stress response[J]. Biochemical Journal, 2012, 448(3): 353-363. doi: 10.1042/BJ20120244
|
[8] |
KIM S, LEE A, YOON H, et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination[J]. Plant Journal, 2008, 55: 77-88. doi: 10.1111/j.1365-313X.2008.03493.x
|
[9] |
SEO P J, KIM M J, PARK J, et al. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis[J]. Plant Journal, 2010, 61(4): 661-671. doi: 10.1111/j.1365-313X.2009.04091.x
|
[10] |
KOCHIAN L V, HOEKENGA O A, PINEROS M A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency[J]. Annual Review of Plant Biology, 2004, 55: 459-493. doi: 10.1146/annurev.arplant.55.031903.141655
|
[11] |
吴佩, 李浩, 早浩龙, 等. 植物对缺磷和铝毒协同进化应答的分子生理机制[J]. 生物技术通报, 2020, 36(7): 170-181.
|
[12] |
LIAO H, WAN H, SHAFF J, et al. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance, exudation of specific organic acids from different regions of the intact root system[J]. Plant Physiology, 2006, 141(2): 674-684. doi: 10.1104/pp.105.076497
|
[13] |
LIANG C, PINEROS M A, TIAN J, et al. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils[J]. Plant Physiology, 2013, 161(3): 1347-1361. doi: 10.1104/pp.112.208934
|
[14] |
CHEN W, TANG L, WANG J, et al. Research advances in the mutual mechanisms regulating response of plant roots to phosphate deficiency and aluminum toxicity[J]. International Journal of Molecular Sciences, 2022, 23(3): 1137. doi: 10.3390/ijms23031137.
|
[15] |
于芮, 王斌, 王建忠, 等. 我国大豆市场发展现状及建议[J]. 合作经济与科技, 2021(19): 92-93. doi: 10.3969/j.issn.1672-190X.2021.19.037
|
[16] |
刘国选, 陈康, 陆星, 等. 大豆GmPIN2b调控根系响应低磷胁迫的功能研究[J]. 华南农业大学学报, 2021, 42(4): 33-41. doi: 10.7671/j.issn.1001-411X.202010014
|
[17] |
LI S, WANG N, JI D, et al. Evolutionary and functional analysis of membrane-bound NAC transcription factor genes in soybean[J]. Plant Physiology, 2016, 172(3): 1804-1820. doi: 10.1104/pp.16.01132
|
[18] |
向凤宁, 王楠. 大豆威廉姆斯82中NAC膜结合转录因子基因GmNTL1及其应用: CN106167801A[P]. 2018-08-28[2022-04-16].
|
[19] |
向凤宁, 王楠. 大豆威廉姆斯82中NAC膜结合转录因子基因GmNTL7及其应用: CN106367423B[P]. 2017-02-01[2022-04-16].
|
[20] |
LIN Y, LIU G, XUE Y, et al. Functional characterization of aluminum (Al)-responsive membrane-bound NAC transcription factors in soybean roots[J]. International Journal of Molecular Sciences, 2021, 22(23): 12854. doi: 10.3390/ijms222312854.
|
[21] |
PARK J, KIM Y S, KIM S G, et al. Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis[J]. Plant Physiology, 2011, 156(2): 537-549. doi: 10.1104/pp.111.177071
|
[22] |
YOON H K, KIM S G, KIM S Y, et al. Regulation of leaf senescence by NTL9-mediated osmotic stress signaling in Arabidopsis[J]. Molecules and Cells, 2008, 25(3): 438-445.
|
[23] |
DUAN M, ZHANG R, ZHU F, et al. A lipid-anchored NAC transcription factor is translocated into the nucleus and activates glyoxalase I expression during drought stress[J]. Plant Cell, 2017, 29(7): 1748-1772. doi: 10.1105/tpc.17.00044
|
[24] |
PERET B, CLEMENT M, NUSSAUME L, et al. Root developmental adaptation to phosphate starvation: Better safe than sorry[J]. Trends in Plant Science, 2011, 16(8): 442-450. doi: 10.1016/j.tplants.2011.05.006
|
[25] |
PÉREZ-TORRES C, LÓPEZ-BUCIO J, CRUZ-RAMÍREZ A, et al. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor[J]. Plant Cell, 2008, 20(12): 3258-3272.
|
[26] |
SHEN C, WANG S, ZHANG S, et al. OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativa L. )[J]. Plant Cell and Environment, 2013, 36(3): 607-620. doi: 10.1111/pce.12001
|
[27] |
BALZERGUE C, DARTEVELLE T, GODON C, et al. Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation[J]. Nature Communications, 2017, 8: 15300. doi: 10.1038/ncomms15300.
|
[28] |
HAM B K, CHEN J, YAN Y, et al. Insights into plant phosphate sensing and signaling[J]. Current Opinion in Biotechnology, 2018, 49: 1-9. doi: 10.1016/j.copbio.2017.07.005
|
[29] |
CHEN Y N, SLABAUGH E, BRANDIZZI F. Membrane-tethered transcription factors in Arabidopsis thaliana: Novel regulators in stress response and development[J]. Current Opinion in Plant Biology, 2008, 11(6): 695-701. doi: 10.1016/j.pbi.2008.10.005
|
[30] |
LEE S, LEE H J, HUH S U, et al. The Arabidopsis NAC transcription factor NTL4 participates in a positive feedback loop that induces programmed cell death under heat stress conditions[J]. Plant Science, 2014, 227: 76-83. doi: 10.1016/j.plantsci.2014.07.003
|
[1] | LI Lei, ZHANG Yingnan, YANG Shubao, FENG Xiaogang, LIU Ying, DONG Hongyan, MA Jinping, LUAN Weimin. A study on development of lymphocytes in the chicken crop[J]. Journal of South China Agricultural University, 2014, 35(3): 24-29. DOI: 10.7671/j.issn.1001-411X.2014.03.005 |
[2] | CHEN Ke-wei, SHAO Tun, LIU Chun-yan, ZENG Ling. Effects of Host Age on the Reproduction and Development of Diachasmimorpha longicaudata[J]. Journal of South China Agricultural University, 2012, 33(4): 465-469. DOI: 10.7671/j.issn.1001-411X.2012.04.008 |
[3] | FENG Cheng-hao,WU Hong,ZHAO Sheng. The Developmental Anatomy of Two Kinds of Trichomes in Pogostemon cablin[J]. Journal of South China Agricultural University, 2006, 27(1): 88-91,116. DOI: 10.7671/j.issn.1001-411X.2006.01.023 |
[4] | LIN Li,REN Shun-xiang. Development and reproduction of B biotype Bemisia tabaci on variegated leafcrotones[J]. Journal of South China Agricultural University, 2005, 26(2): 39-42. DOI: 10.7671/j.issn.1001-411X.2005.02.010 |
[5] | Abstract. Effect of temperature on the development of Trichogramma ostriniae (Hymenoptera:Trichogrammatidae)[J]. Journal of South China Agricultural University, 2004, 25(4): 43-46. DOI: 10.7671/j.issn.1001-411X.2004.04.011 |
[6] | ZHONG Guo hong,LIANG Guang wen,MO Meng yi,ZENG Ling. Effects of Temperature and Humidity on Development of Experimental Cotton Leafworm Population[J]. Journal of South China Agricultural University, 2001, 22(3): 29-32. DOI: 10.7671/j.issn.1001-411X.2001.03.009 |
[7] | Wu Jiajiao ,Zhang Weiqiu ,Liang Guangwen. THE EFFECT OF TEMPERATURES ON THE DEVELOP-MENT AND FECUNDITY OF Thrips palmi Karny[J]. Journal of South China Agricultural University, 1995, (4): 14-19. |
[8] | Liao Jinling, Feng Zhixin. EFFECT OF OXAMYL ON THk DEVELOPMENT OF THE NEMATODE,Meloidogyne arenaria[J]. Journal of South China Agricultural University, 1995, (2): 60-61. |
[9] | Wang Xiaofengl, Fu Jiarui. CHARACTERISTICS OF DEVELOPMENT AND STORAGE OF MANGO SEEDS[J]. Journal of South China Agricultural University, 1994, (2): 26-31. |
[10] | Wang Xiongying Wu Pentuand He Xianlai. A STUDY ON THE TEMPERATURE-RANGE FOR CONSTANT DEVELOPMENT (TRCD) OF BIVOLTIN Bombyx mori[J]. Journal of South China Agricultural University, 1992, (2): 98-100. |