• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LIU Caiyun, GAO Xiuqing, ZHAO Jing. Existing position and extraction of antifungal substance produced by Chaetomium subaffine LB-1[J]. Journal of South China Agricultural University, 2023, 44(2): 280-286. DOI: 10.7671/j.issn.1001-411X.202204019
Citation: LIU Caiyun, GAO Xiuqing, ZHAO Jing. Existing position and extraction of antifungal substance produced by Chaetomium subaffine LB-1[J]. Journal of South China Agricultural University, 2023, 44(2): 280-286. DOI: 10.7671/j.issn.1001-411X.202204019

Existing position and extraction of antifungal substance produced by Chaetomium subaffine LB-1

More Information
  • Received Date: April 11, 2022
  • Available Online: May 17, 2023
  • Objective 

    The existing position and extraction method of antifungal substance produced by Chaetomium subaffine strain LB-1 were studied in order to lay a foundation for the development of the strain LB-1 to control plant diseases.

    Method 

    With Botrytis cinerea and Exserohilum turcicum as test plant pathogens, the sealed plate assay was used to detect whether the strain LB-1 could produce volatile antifungal substance. The hyphae ultrasonic breaking and liquid culture methods were used to detect the existing position of nonvolatile antifungal substance produced by the strain LB-1. The extraction method of antifungal substance was determined by detecting the inhibitory effects of ammonium sulfate precipitation, hydrochloric acid precipitation and organic solvents extracts of strain LB-1 culture broth via poison plate assay and filter paper disc assay.

    Result 

    The strain LB-1 did not have obvious inhibitory effect on the growth of the two test plant pathogens when being co-cultured in a sealed plate with each plant pathogen, indicating that strain LB-1 could not produce volatile antifungal substance. The antifungal activity of the intracellular extract of the strain LB-1 was not different from that of the control, but its culture broth had a strong inhibitory effect on B. cinerea and E. turcicum, indicating that the antifungal substances produced by the strain LB-1 existed outside the mycelium. Neither ammonium sulfate precipitate nor hydrochloric acid precipitate of strain LB-1 culture broth showed inhibitory effect on B. cinerea and E. turcicum, but the organic solvent extract of strain LB-1 culture broth showed antifungal effect, and the inhibition rate of n-butanol extract was the highest. When the concentration was 0.1 mg/mL, the inhibition rates against B. cinerea and E. turcicum growth were 59.80% and 58.37% respectively.

    Conclusion 

    The strain LB-1 inhibited the growth of plant pathogenic fungi by producing extracellular nonvolatile antifungal substances, and the antifungal substance in the culture broth can be extracted by n-butanol.

  • [1]
    HUANG P M, WATTANACHAI P, KASEM S, et al. Efficacy of Chaetomium species as biological control agents against Phytophthora nicotianae root rot in citrus[J]. Mycobiology, 2015, 43(3): 288-296. doi: 10.5941/MYCO.2015.43.3.288
    [2]
    万 慧, 刘晓光, 曹荣花, 等. 螺旋毛壳ND35抗生素的产生及其在病害生物防治中的作用[J]. 植物保护学报, 2007, 34(1): 51-56. doi: 10.3321/j.issn:0577-7518.2007.01.010
    [3]
    刘永亮, 尹成林, 田叶韩, 等. 拮抗真菌HTC的鉴定及其对辣椒疫病的生物防治潜力[J]. 植物保护学报, 2013, 40(5): 437-444. doi: 10.13802/j.cnki.zwbhxb.2013.05.008
    [4]
    SOYTONG K, KANOKMEDHAKUL S, KUKONGVIRIYAPA V, et al. Application of Chaetomium species (Ketomium®) as a new broad spectrum biological fungicide for plant disease control: A review article[J]. Fungal Diversity, 2001, 7: 1-15.
    [5]
    张 蕊, 田叶韩, 李 超, 等. 球毛壳菌ND35对黄瓜种子萌发和胚根生长的影响[J]. 北方园艺, 2020(23): 1-9.
    [6]
    FATIMA N, MUHAMMAD S A, KHAN I, et al. Chaetomium endophytes: A repository of pharmacologically active metabolites[J]. Acta Physiologiae Plantarum, 2016, 38(6): 1-18.
    [7]
    梁海林, 童志武, 朱 笃. 球毛壳菌次级代谢产物及其生物活性研究进展[J]. 天然产物研究与开发, 2018, 30: 702-707. doi: 10.16333/j.1001-6880.2018.4.027
    [8]
    印容, 高慧娟, 赵秀云. 球毛壳菌及其产生的鞘氨醇对油菜根肿病的室内生防作用[J]. 华中农业大学学报, 2016, 35(5): 58-62. doi: 10.13300/j.cnki.hnlkxb.2016.05.029
    [9]
    SHYLAJA G, SASIKUMAR K, SATHIAVELU A. Antimycobacterial potential of resorcinol type lipid isolated from Chaetomium cupreum, an endophytic fungus from Mussaenda luteola[J]. Bangladesh Journal of Pharmacology, 2018, 13: 114-119. doi: 10.3329/bjp.v13i2.34860
    [10]
    GUO Q F, YIN Z H, ZHANG J J, et al. Chaetomadrasins A and B, two new cytotoxic cytochalasans from desert soil-derived fungus Chaetomium madrasense 375[J]. Molecules, 2019, 24(18): 3240-3249. doi: 10.3390/molecules24183240
    [11]
    赵德立, 曾林子, 李 晖, 等. 多粘芽孢杆菌JW-725抗菌活性物质及其发酵条件的初步研究[J]. 植物保护, 2006, 32(1): 47-50. doi: 10.3969/j.issn.0529-1542.2006.01.012
    [12]
    梁建根, 吴吉安, 竺利红, 等. 生防菌BH-2发酵液中抑菌成分的定位及提取研究[J]. 中国农学通报, 2007, 23(11): 324-327. doi: 10.3969/j.issn.1000-6850.2007.11.070
    [13]
    LANDUM M C, DO ROSÁRIO FÉLIX M, ALHO J, et al. Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum[J]. Microbiological Research, 2016, 183: 100-108. doi: 10.1016/j.micres.2015.12.001
    [14]
    SILVA M, PEREIRA A, TEIXEIRA D, et al. Combined use of NMR, LC-ESI-MS and antifungal tests for rapid detection of bioactive lipopeptides produced by Bacillus[J]. Advances in Microbiology, 2016, 6: 788-796. doi: 10.4236/aim.2016.610077
    [15]
    许乐, 王子强, 张 爽, 等. 丹参根腐病拮抗细菌筛选、鉴定及生防机理研究[J]. 中国生物防治学报, 2021, 37(4): 846-854. doi: 10.16409/j.cnki.2095-039x.2021.04.011
    [16]
    杨廷雅, 孙 亮, 周婷婷, 等. 短短芽孢杆菌Brevibacillus brevs HAB-5主要抑菌活性成分的分析及其特性研究[J]. 中国生物防治学报, 2021, 30(2): 222-231.
    [17]
    PHONG N H, PONGNAK W, SOYTONG K. Antifungal activities of Chaetomium spp. against Fusarium wilt of tea[J]. Plant Protection Science, 2016, 52(1): 10-17. doi: 10.17221/34/2015-PPS
    [18]
    YAN W, CAO L L, ZHANG Y Y, et al. New metabolites from endophytic fungus Chaetomium globosum CDW7[J]. Molecules, 2018, 23(11): 1-7.
    [19]
    刘彩云, 季洪亮, 王 瑞, 等. 生防菌株LB-1对几种常见植物病原真菌的拮抗作用及其生长适应性分析[J]. 植物保护学报, 2018, 45(2): 332-339.
    [20]
    罗 琳, 周泠璇, 刘 娅. 毕赤酵母G5拮抗葡萄灰霉病机理初探[J]. 生物技术通报, 2017, 33(9): 210-215.
    [21]
    周 瑚, 邹秋霞, 胡 玲, 等. 特基拉芽孢杆菌JN-369的分离鉴定及其抑菌物质分析[J]. 农药学学报, 2019, 21(1): 52-58.
    [22]
    马桂珍, 吴少杰, 付泓润, 等. 海洋放线菌BM-2菌株抗真菌活性物质的分离纯化与结构鉴定[J]. 中国生物防治学报, 2014, 30(3): 393-401.
    [23]
    JUNIOR W J F L, BOVO B, NADAI C, et al. Biocontrol ability and action mechanism of Starmerella bacillaris (Synonym Candida zemplinina) isolated from wine musts against gray mold disease agent Botrytis cinerea on grape and their effects on alcoholic fermentation[J]. Frontiers in Microbiology, 2016, 7: 1-12.
    [24]
    TOGHUEO R M K, EKE P, ZABALGOGEAZCOA I, et al. Biocontrol and growth enhancement potential of two endophytic Trichoderma spp. from Terminalia catappa against the causative agent of common bean root rot (Fusarium solani)[J]. Biological Control, 2016, 96: 8-20. doi: 10.1016/j.biocontrol.2016.01.008
    [25]
    MUNJAL V, NADAKKAKATH A V, SHEORAN N, et al. Genotyping and identification of broad spectrum antimicrobial volatiles in black pepper root endophytic biocontrol agent, Bacillus megaterium BP17[J]. Biological Control, 2016, 92: 66-76. doi: 10.1016/j.biocontrol.2015.09.005
    [26]
    MCMULLIN D R, SUMARAH M W, BLACKWELL B A, et al. New azaphilones from Chaetomium globosum isolated from the built environment[J]. Tetrahedron Letters, 2013, 54: 568-572. doi: 10.1016/j.tetlet.2012.11.084
    [27]
    PARK J H, CHOI G J, JANG K S, et al. Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum[J]. FEMS Microbiology Letters, 2005, 252(2): 309-313. doi: 10.1016/j.femsle.2005.09.013
    [28]
    YAMADA T, MUROGA Y, JINNO M, et al. New class azaphilone produced by a marine fish-derived Chaetomium globosum: The stereochemistry and biological activities[J]. Bioorganic and Medicinal Chemistry, 2011, 19(13): 4106-4113. doi: 10.1016/j.bmc.2011.05.008
    [29]
    JIAO W X, FENG Y J, BLUNT J W, et al. Chaetoglobosins Q, R and T, three further new metabolites form Chaetomium globosum[J]. Journal of Natural Products, 2004, 67(10): 1722-1725. doi: 10.1021/np030460g
    [30]
    ZHENG Q C, KONG M Z, ZHAO Q, et al. Chaetoglobosin Y, a new cytochalasan from Chaetomium globosum[J]. Fitoterapia, 2014, 93: 126-131. doi: 10.1016/j.fitote.2013.12.022
    [31]
    何海清, 钟 娟, 周金燕, 等. 角毛壳菌CH-1产生的抗真菌活性化合物的纯化和鉴定[J]. 中国生物防治学报, 2015, 31(4): 592-597.
  • Cited by

    Periodical cited type(5)

    1. 高旻. 视频分析技术在港口交通流量监控中的应用. 电视技术. 2025(01): 223-225 .
    2. 陈钇果. 基于FPGA架构的人工智能加速器设计与实现. 软件. 2025(01): 59-61 .
    3. 沃英达. 基于深度学习算法的激光散斑音频信号提取与增强. 电声技术. 2025(02): 52-54+77 .
    4. 蓝壮青. 基于欠定盲源分离的双路音频信号噪声自适应分离. 现代电子技术. 2024(24): 68-72 .
    5. 吴源源. 基于机器学习的音频信号处理系统设计. 电声技术. 2024(11): 182-184 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return