WANG Xiaochan, WU Yao, XIAO Maohua, et al. Research progress of intelligent identification technology in aquaculture[J]. Journal of South China Agricultural University, 2023, 44(1): 24-33. DOI: 10.7671/j.issn.1001-411X.202204013
    Citation: WANG Xiaochan, WU Yao, XIAO Maohua, et al. Research progress of intelligent identification technology in aquaculture[J]. Journal of South China Agricultural University, 2023, 44(1): 24-33. DOI: 10.7671/j.issn.1001-411X.202204013

    Research progress of intelligent identification technology in aquaculture

    More Information
    • Received Date: April 10, 2022
    • Available Online: May 17, 2023
    • Intelligent identification technology is the key technology for the transformation of aquaculture from crude to intensive. Intelligent recognition in aquaculture is to realize the monitoring of underwater organisms and environment by researching and using machine vision and machine learning technology, and to judge, analyze and predict the problems arising in production management for the purpose of automated aquaculture. This review analyzed the research and development status of intelligent recognition technology in aquaculture from four aspects of species recognition and classification, age recognition, sex recognition and behavior recognition of organisms, described the main intelligent recognition technologies and principles used in aquaculture, and provided an outlook on the future development of intelligent recognition technology in aquaculture, with a view to providing references and new ideas for the modernization and intelligent development of Chinese fisheries industry.

    • [1]
      FAO. Fisheries and aquaculture statistics [M]. Rome: FAO fisheries and Aquaculture Department, Food and Agriculture Organization of the United Nations, 2016.
      [2]
      粮农组织渔业及水产养殖部. 2019冠状病毒(COVID-19)大流行对渔业和水产养殖的影响概述: 《2020年世界渔业和水产养殖状况》增补[M]. 罗马: 联合国粮食及农业组织, 2020.
      [3]
      中国水产学会. 水产学学科发展报告: 2006—2007[M]. 北京: 中国科学技术出版社, 2007.
      [4]
      LANGAN R, COUTURIER M. Finfish aquaculture diversification[M]. London: CABI, 2002.
      [5]
      DALSGAARD J, LUND I, THORARINSDOTTIR R, et al. Farming different species in RAS in Nordic countries: Current status and future perspectives[J]. Aquacultural Engineering, 2013, 53: 2-13. doi: 10.1016/j.aquaeng.2012.11.008
      [6]
      陈桂芬, 李静, 陈航, 等. 大数据时代人工智能技术在农业领域的研究进展[J]. 中国农业文摘(农业工程), 2019, 31(1): 12-16.
      [7]
      黄志涛, 何佳, 宋协法. 基于鱼体运动特征和图像纹理特征的鱼类摄食行为识别与量化[J]. 中国海洋大学学报(自然科学版), 2022, 52(1): 32-41. doi: 10.16441/j.cnki.hdxb.20210050
      [8]
      袁小平, 石慧. 基于迁移学习的鱼类识别方法研究[J]. 计算机技术与发展, 2021, 31(4): 52-56. doi: 10.3969/j.issn.1673-629X.2021.04.009
      [9]
      袁红春, 张硕. 基于Faster R-CNN和图像增强的水下鱼类目标检测方法[J]. 大连海洋大学学报, 2020, 35(4): 612-619.
      [10]
      QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1986(1): 81-106.
      [11]
      LEWIS D D. Naive (bayes) at forty: The independence assumption in information retrieval [C]//Proceedings of the 10th European Conference on Machine Learning. Berlin : Springer-Verlag, 1998: 4-15.
      [12]
      CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
      [13]
      KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60: 84-90. doi: 10.1145/3065386
      [14]
      VILLON S, MOUILLOT D, CHAUMONT M, et al. A Deep learning method for accurate and fast identification of coral reef fishes in underwater images[J]. Ecological Informatics, 2018, 48: 238-244. doi: 10.1016/j.ecoinf.2018.09.007
      [15]
      RAUF H T, LALI M I U, ZAHOOR S, et al. Visual features based automated identification of fish species using deep convolutional neural networks[J]. Computers and Electronics in Agriculture, 2019, 167: 105075. doi: 10.1016/j.compag.2019.105075
      [16]
      LI X, SHANG M, HAO J, et al. Accelerating fish detection and recognition by sharing CNNs with objectness learning[C]//OCEANS 2016 - Shanghai. Shanghai: IEEE, 2016: 1-5.
      [17]
      LABAO A B, NAVAL P C JR. Cascaded deep network systems with linked ensemble components for underwater fish detection in the wild[J]. Ecological Informatics, 2019, 52: 103-121. doi: 10.1016/j.ecoinf.2019.05.004
      [18]
      CAI K W, MIAO X Y, WANG W, et al. A modified YOLOv3 model for fish detection based on MobileNetv1 as backbone[J]. Aquacultural Engineering, 2020, 91: 102117. doi: 10.1016/j.aquaeng.2020.102117
      [19]
      SHEVCHENKO V, EEROLA T, KAARNA A. Fish detection from low visibility underwater videos[C]//The 24th International Conference on Pattern Recognition (ICPR), Beijing: IEEE, 2018: 1971-1976.
      [20]
      GAUDE G S, BORKAR S. Fish detection and tracking for turbid underwater video[C]//2019 International Conference on Intelligent Computing and Control Systems (ICCS). Madurai : IEEE, 2019: 326-331.
      [21]
      TAMOU A B, BENZINOU A, NASREDDINE K, et al. Transfer learning with deep convolutional neural network for underwater live fish recognition[C]//2018 IEEE International Conference on Image Processing, Applications and Systems (IPAS). Sophia Antipolis: IEEE, 2018: 204-209.
      [22]
      MENG L, HIRAYAMA T, OYANAGI. S. Underwater-drone with panoramic camera for automatic fish recognition based on deep learning[J]. IEEE Access, 2018, 6: 17880-17886. doi: 10.1109/ACCESS.2018.2820326
      [23]
      XU W, MATZNER S. Underwater fish detection using deep learning for water power applications[C]//2018 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas: IEEE, 2018: 313-318.
      [24]
      KARTIKA D, HERUMURTI D. Koi fish classification based on HSV color space[C]//2016 International Conference on Information & Communication Technology & Systems. Surabaya: IEEE, 2017: 96-100.
      [25]
      THARWAT A, HEMEDAN A A, HASSANIEN A E, et al. A biometric-based model for fish species classification[J]. Fisheries Research, 2018, 204: 324-336. doi: 10.1016/j.fishres.2018.03.008
      [26]
      SALMAN A, JALAL A, SHAFAIT F, et al. Fish species classification in unconstrained underwater environments based on deep learning[J]. Limnology and Oceanography:Methods, 2016, 14(9): 570-585. doi: 10.1002/lom3.10113
      [27]
      JALAL A, SALMAN A, MIAN A, et al. Fish detection and species classification in underwater environments using deep learning with temporal information[J]. Ecological Informatics, 2020, 57: 101088. doi: 10.1016/j.ecoinf.2020.101088
      [28]
      CHRISTENSEN J H, GALEAZZI R, MOGENSEN L V, et al. Detection, ocalization and classification of fish and fish species in poor conditions using convolutional neural networks[C]//2018 IEEE OES Autonomous Underwater Vehicle Symposium. Porto: IEEE, 2018: 1-6
      [29]
      SUN X , SHI J, DONG J, et al. Fish recognition from low-resolution underwater images[C]//2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). Datong : IEEE, 2016: 471-476
      [30]
      PRAMUNENDAR R A, WIBIRAMA S, SANTOSA P I. Fish classification based on underwater image interpolation and back-propagation neural network[C]//2019 5th International Conference on Science and Technology (ICST). Yogyakarta: IEEE, 2019: 1-6.
      [31]
      RACHMATULLAH M N, SUPRIANA I. Low resolution image fish classification using convolutional neural network[C]//2018 5th International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA). Krabi: IEEE, 2018: 78-83.
      [32]
      JIN L, HONG L. Deep learning for underwater image recognition in small sample size situations[C]//OCEANS 2017 - Aberdeen. Aberdeen: IEEE, 2017: 1-4.
      [33]
      ALLKEN V, HANDEGARD N O, ROSEN S, et al. Fish species identification using a convolutional neural network trained on synthetic data[J]. ICES Journal of Marine Science, 2019, 76(1): 342-349. doi: 10.1093/icesjms/fsy147
      [34]
      MATHUR M, VASUDEV D, SAHOO S, et al. Crosspooled FishNet: Transfer learning based fish species classification model[J]. Multimedia Tools and Applications, 2020, 79(41/42): 31625-31643. doi: 10.1007/s11042-020-09371-x
      [35]
      SIDDIQUI S A, SALMAN A, MALIK M I, et al. Automatic fish species classification in underwater videos: Exploiting pre-trained deep neural network models to compensate for limited labelled data[J]. ICES Journal of Marine Science, 2017, 75(1): 374-389.
      [36]
      QIN H, LI X, LIANG J, et al. DeepFish: Accurate underwater live fish recognition with a deep architecture[J]. Neurocomputing, 2016, 187: 49-58. doi: 10.1016/j.neucom.2015.10.122
      [37]
      RATHI D, JAIN S, INDU S. Underwater fish species classification using convolutional neural network and deep learning[C]//2017 9th International Conference on Advances in Pattern Recognition (ICAPR). Bangalore: IEEE, 2017: 1-6.
      [38]
      DEEP B V, DASH R. Underwater fish species recognition using deep learning techniques[C]//2019 6th International Conference on Signal Processing and Integrated Networks (SPIN). Noida : IEEE, 2019: 665-669.
      [39]
      SUCHARITA V, JYOTHI S. An identification of penaeid prawn species based on histogram values[J]. International Journal of Advanced Research in Computer Science and Software Engineering, 2013, 3(7): 807-811.
      [40]
      LIU Z, JIA X, XU X. Study of shrimp recognition methods using smart networks[J]. Computers and Electronics in Agriculture, 2019, 165: 104926. doi: 10.1016/j.compag.2019.104926
      [41]
      刘子豪. 基于机器视觉技术的南美白对虾分类算法研究与在线实现[D]. 杭州: 浙江大学, 2017.
      [42]
      李渊博. 基于轻量级深度学习的虾关键点检测及个体识别算法研究[D]. 杭州: 浙江大学, 2021.
      [43]
      张超. 计算机视觉技术在梭子蟹养殖中的应用研究[D]. 宁波: 宁波大学, 2014.
      [44]
      韩牧轩, 秦杰文, 段友健, 等. 鸭绿沙塘鳢耳石质量与年龄的关系[J]. 辽东学院学报(自然科学版), 2022, 29(1): 6-11. doi: 10.14168/j.issn.1673-4939.2022.01.02
      [45]
      轩中亚, 姜涛, 刘洪波, 等. 基于耳石微化学分析的鱼类种群生态学研究进展[J]. 渔业科学进展, 2022, 43(1): 1-14. doi: 10.19663/j.issn2095-9869.20210528002
      [46]
      王继隆, 刘伟, 杨文波, 等. 基于耳石微化学特征的大麻哈鱼生境履历分析及其在群组鉴别中的应用[J]. 中国海洋大学学报(自然科学版), 2021, 51(10): 51-59.
      [47]
      杨坤, 刘小帅, 李天才, 等. 鲈鲤早期鱼苗的耳石标记研究[J]. 水生生物学报, 2021, 45(4): 889-897. doi: 10.7541/2021.2019.259
      [48]
      ROBERTSON S, MORISON A. Development of an artificial neural network for automated age estimation[M]. Department of Natural Resources and Environment, Victoria, 2001.
      [49]
      FABLET R, JOSSE N L. Automated fish age estimation from otolith images using statistical learning[J]. Fisheries Research, 2005, 72(2/3): 279-290.
      [50]
      BERMEJO S, MONEGAL B, CABESTANY J. Fish age categorization from otolith images using multi-class support vector machines[J]. Fisheries Research, 2007, 84(2): 247-253. doi: 10.1016/j.fishres.2006.11.021
      [51]
      刘凤连, 王玲, 温显斌, 等. 基于图像处理技术与支持向量机的鱼龄识别[J]. 光电子·激光, 2010, 21(11): 1730-1733.
      [52]
      MOEN E, HANDEGARD N O, ALLKEN V, et al. Automatic interpretation of otoliths using deep learning[J]. PLoS One, 2018, 13(12): e0204713. doi: 10.1371/journal.pone.0204713
      [53]
      ORDONEZ A, EIKVIL L, SALBERG A B, et al. Explaining decisions of deep neural networks used for fish age prediction[J]. PLoS One, 2020, 15(6): e0235013. doi: 10.1371/journal.pone.0235013
      [54]
      POLITIKOS D V, PETASIS G, CHATZISPYROU A, et al. Automating fish age estimation combining otolith images and deep learning: The role of multitask learning[J]. Fisheries Research, 2021, 242: 106033.
      [55]
      BENZER S, GARABAGHI F H, BENZER R, et al. Investigation of some machine learning algorithms in fish age classification[J]. Fisheries Research, 2022, 245: 106151.
      [56]
      WILLIAMS T, BEDFORD B C. The use of otoliths for age determination[C]//BAGENAL T B. The ageing of fish: Proceedings of the International Symposium. London: Allen & Unwin, 1974.
      [57]
      PANFILI J, PONTUAL H D, TROADEC H, et al. Manual of fish sclerochronology[M]. Brest: IFREMER-IRD, 2002.
      [58]
      WANG C H, WALTHER B D, GILLANDERS B M. Introduction to the 6th International Otolith Symposium[J]. Marine and Freshwater Research, 2019, 70: 1-3. doi: 10.1071/MF18355
      [59]
      ELSDON, T S, WELLS, B K, CAMPANA, S E. Otolith chemistry to describe movements and life-history parameters of fishes: Hypotheses, assumptions, limitations and inferences[J]. Oceanography and Marine Biology:An Annual Review, 2008, 46: 297-330.
      [60]
      陶彬彬, 胡炜. 鱼类性别控制育种研究进展[J]. 中国农业科技导报, 2022, 24(2): 1-10. doi: 10.13304/j.nykjdb.2021.0582
      [61]
      韩玥, 蔺佳文, 韩英. 鱼类性别调控机制的研究进展[J]. 黑龙江动物繁殖, 2020, 28(1): 47-51.
      [62]
      龙娟, 郑树清, 王晓双, 等. TGF-β信号通路在鱼类性别决定与分化中的作用[J]. 水产学报, 2020, 44(1): 166-177.
      [63]
      喻杰, 杨弘. 鱼类性别决定的遗传基础及性别控制技术在水产养殖中的应用[J]. 大连海洋大学学报, 2020, 35(2): 161-168. doi: 10.16535/j.cnki.dlhyxb.2019-090
      [64]
      齐飘飘, 陈敏, 于跃, 等. 高温和皮质醇对黄颡鱼性别分化的影响[J]. 水生生物学报, 2021, 45(1): 106-117. doi: 10.7541/2021.2020.044
      [65]
      DU H, ZHANG X, LENG X, et al. Gender and gonadal maturity stage identification of captive Chinese sturgeon, Acipenser sinensis, using ultrasound imagery and sex steroids[J]. General and Comparative Endocrinology, 2017, 245: 36-43.
      [66]
      GOLPOUR A, BROQUARD C, MILLA S, et al. Gonad histology and serum 11-KT profile during the annual reproductive cycle in sterlet sturgeon adult males, Acipenser ruthenus[J]. Reproduction in Domestic Animals, 2017, 52: 319-326. doi: 10.1111/rda.12911
      [67]
      YARMOHAMMADI M, POURKAZEMI M, KAZEMI R, et al. Sex steroid level and sexual dimorphism expression of genes in gonads of the great sturgeon Huso huso Linneaus, 1758 during maturity developmental stages[J]. Aquaculture Research., 2017, 48(4): 1413-1429. doi: 10.1111/are.12977
      [68]
      BARULIN N V. Using machine learning algorithms to analyse the scute structure and sex identification of sterlet Acipenser ruthenus (Acipenseridae)[J]. Aquaculture Research, 2019, 50: 2810-2825.
      [69]
      CUI Y, PAN T, CHEN S, et al. A gender classification method for Chinese mitten crab using deep convolutional neural network[J]. Multimedia Tools and Applications, 2020, 79(11/12): 7669-7684. doi: 10.1007/s11042-019-08355-w
      [70]
      TODD E V, ORTEGA-RECALDE O, LIU H, et al. Stress, novel sex genes, and epigenetic reprogramming orchestrate socially controlled sex change[J]. Science Advances, 2019, 5(7): eaaw7006. doi: 10.1126/sciadv.aaw7006.
      [71]
      LI D, WANG Z, WU S, et al. Automatic recognition methods of fish feeding behavior in aquaculture: A review[J]. Aquaculture, 2020, 528: 735508. doi: 10.1016/j.aquaculture.2020.735508
      [72]
      ZHOU C, ZHANG B, LIN K, et al. Near-infrared imaging to quantify the feeding behavior of fish in aquaculture[J]. Computers & Electronics in Agriculture, 2017, 135: 233-241.
      [73]
      ZHOU C, SUN C, LIN K, et al. Handling water reflections for computer vision in aquaculture[J]. Transactions of the ASABE, 2018, 61(2): 469-479.
      [74]
      ZHOU C, XU D, CHEN L, et al. Evaluation of fish feeding intensity in aquaculture using a convolutional neural network and machine vision[J]. Aquaculture, 2019, 507: 457-465. doi: 10.1016/j.aquaculture.2019.04.056
      [75]
      MåLøY H, AAMODT A, MISIMI E. A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aquaculture[J]. Computers and Electronics in Agriculture, 2019, 167: 105087. doi: 10.1016/j.compag.2019.105087
      [76]
      ADEGBOYE M A, AIBINU A M, KOLO J G, et al. Incorporating intelligence in fish feeding system for dispensing feed based on fish feeding intensity[J]. IEEE Access, 2020, 8: 91948-91960. doi: 10.1109/ACCESS.2020.2994442
      [77]
      GIARDINA I. Collective behavior in animal groups: Theoretical models and empirical studies[J]. HFSP Journal, 2008, 2(4): 205-219. doi: 10.2976/1.2961038
      [78]
      HAN F, ZHU J, LIU B, et al. Fish shoals behavior detection based on convolutional neural network and spatiotemporal information[J]. IEEE Access, 2020, 8: 126907-126926. doi: 10.1109/ACCESS.2020.3008698
      [79]
      ZHANG B, XIE F, HAN F. Fish population status detection based on deep learning system[C]//2019 IEEE International Conference on Mechatronics and Automation (ICMA). Tianjin: IEEE, 2019: 81-85.
      [80]
      PAPADAKIS V M, PAPADAKIS I E, LAMPRIANIDOU F, et al. A computer-vision system and methodology for the analysis of fish behavior[J]. Aquacultural Engineering, 2012, 46: 53-59. doi: 10.1016/j.aquaeng.2011.11.002
      [81]
      ZHAO J, BAO W, ZHANG F, et al. Modified motion influence map and recurrent neural network-based monitoring of the local unusual behaviors for fish school in intensive aquaculture[J]. Aquaculture, 2018, 493: 165-175. doi: 10.1016/j.aquaculture.2018.04.064
      [82]
      ZHAO J, GU Z, SHI M, et al. Spatial behavioral characteristics and statistics-based kinetic energy modeling in special behaviors detection of a shoal of fish in a recirculating aquaculture system[J]. Computers & Electronics in Agriculture, 2016, 127: 271-280.
      [83]
      MORIMOTO T, ZIN T T, ITAMI T. A study on abnormal behavior detection of infected shrimp[C]//2018 IEEE 7th Global Conference on Consumer Electronics (GCCE). Nara: IEEE, 2018: 291-292.

    Catalog

      Article views (350) PDF downloads (466) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return