• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
XIAO Wei, WU Qingfeng, LI Fusheng. Effect of drip irrigation and nitrogen management on inorganic nitrogen content and nitrous oxide emission in maize-planting soil[J]. Journal of South China Agricultural University, 2023, 44(3): 410-419. DOI: 10.7671/j.issn.1001-411X.202204004
Citation: XIAO Wei, WU Qingfeng, LI Fusheng. Effect of drip irrigation and nitrogen management on inorganic nitrogen content and nitrous oxide emission in maize-planting soil[J]. Journal of South China Agricultural University, 2023, 44(3): 410-419. DOI: 10.7671/j.issn.1001-411X.202204004

Effect of drip irrigation and nitrogen management on inorganic nitrogen content and nitrous oxide emission in maize-planting soil

More Information
  • Received Date: April 05, 2022
  • Available Online: May 17, 2023
  • Objective 

    The objectives of this study were to obtain a rational drip fertigation mode for reducing nitrous oxide (N2O) emission in maize-planting soil, and reveal the effects of soil inorganic nitrogen content on N2O emission under different drip irrigation amount and nitrogen fertigation ratios.

    Method 

    In the mobile rainproof shelter, two-season maize experiments with three drip irrigation amount (W60, W80 and W100 were 50%−60%, 70%−80% and 90%−100% of field water holding capacity, respectively) and two nitrogen fertigation proportions (F55: 50% nitrogen fertilizer applied to soil as basal fertilizer, and 50% nitrogen fertilizer as fertigation, F37: 30% nitrogen fertilizer applied to soil as basal fertilizer, and 70% nitrogen fertilizer as fertigation; Both of F55and F37 had the equal nitrogen rate of 180 kg·hm−2) were carried out. The soil N2O flux over the whole growth stage and soil inorganic nitrogen content at different growth stages were measured. Soil N2O emissions at the different growth stages and over the whole growth stage were calculated and the relationships between soil N2O flux and soil inorganic nitrogen content were analyzed.

    Result 

    The N2O emission fluxes of corn soil in two seasons were similar. Under the same nitrogen application ratio, soil N2O emission fluxes under W100 water treatment were higher than those under W60 and W80 in most maize growth periods, indicating that soil N2O emission fluxes under high water treatment were higher than those under medium and low water treatment. Under the same water treatment, soil N2O emission flux ratio of F55 was lower than that of F37 except in summer maize seedling stage. During the whole growth period, the cumulative emission of soil N2O under W60F55 treatment in spring was lower than that under other treatments, followed by W80F55, while those under W60F37 and W80F55 treatments in summer were lower. In addition, in two seasons, soil N2O flux was significantly correlated with nitrate nitrogen and nitrite nitrogen contents, with correlation coefficients ranging from 0.433 to 0.579 and 0.396 to 0.532, respectively.

    Conclusion 

    W80F55 treatment (70%−80% field water holding capacity, 50% nitrogen fertilizer as basal fertilizer and 50% nitrogen fertilizer as fertigation) reduces N2O emission from maize-planting soil. In addition, soil nitrate nitrogen and nitrite nitrogen contents significantly affect soil N2O emission.

  • [1]
    PACHAURI R K, MEYER L, PLATTNER G K, et al. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [R/OL]// IPCC. Climate change 2014: Synthesis report. Geneva, Switzerland: IPCC, 2014: 87. [2022-03-20]. https://boris.unibe.ch/id/eprint/71642.
    [2]
    DAVIDSON E A, KANTER D. Inventories and scenarios of nitrous oxide emissions[J]. Environmental Research Letters, 2014, 9(10): 105012. doi: 10.1088/1748-9326/9/10/105012.
    [3]
    TIAN H Q, YANG J, XU R T, et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty[J]. Global Change Biology, 2019, 25(2): 640-659. doi: 10.1111/gcb.14514
    [4]
    GOMEZ-CASANOVAS N, MATAMALA R, COOK D R, et al. Net ecosystem exchange modifies the relationship between the autotrophic and heterotrophic components of soil respiration with abiotic factors in prairie grasslands[J]. Global Change Biology, 2012, 18(8): 2532-2545. doi: 10.1111/j.1365-2486.2012.02721.x
    [5]
    XU X, SHI Z, LI D J, et al. , Soil properties control decomposition of soil organic carbon: Results from data-assimilation analysis[J]. Geoderma, 2016, 262: 235-242. doi: 10.1016/j.geoderma.2015.08.038
    [6]
    隽英华, 孙文涛, 韩晓日, 等. 春玉米土壤矿质氮累积及酶活性对施氮的响应[J]. 植物营养与肥料学报, 2014, 20(6): 1368-1377. doi: 10.11674/zwyf.2014.0606
    [7]
    侯云鹏, 尹彩侠, 孔丽丽, 等. 氮肥对吉林春玉米产量、农学效率和氮养分平衡的影响[J]. 中国土壤与肥料, 2016(6): 93-98.
    [8]
    朱艳, 蔡焕杰, 宋利兵, 等. 加气灌溉改善温室番茄根区土壤通气性[J]. 农业工程学报, 2017, 33(21): 163-172. doi: 10.11975/j.issn.1002-6819.2017.21.019
    [9]
    黎会仙, 王文娥, 胡笑涛, 等. 水肥一体化膜下滴灌水肥及速效氮分布特征研究[J]. 灌溉排水学报, 2018, 37(3): 51-57. doi: 10.13522/j.cnki.ggps.2017.0159
    [10]
    奚雅静, 汪俊玉, 李银坤, 等. 滴灌水肥一体化配施有机肥对土壤N2O排放与酶活性的影响[J]. 中国农业科学, 2019, 52(20): 3611-3624. doi: 10.3864/j.issn.0578-1752.2019.20.012
    [11]
    谢海宽, 李贵春, 徐驰, 等. 不同灌溉方式对设施菜地N2O排放的影响及其年际差异[J]. 农业环境科学学报, 2018, 37(4): 825-832. doi: 10.11654/jaes.2017-1485
    [12]
    于亚泽, 焦燕, 杨文柱, 等. 不同灌溉方式旱田土壤N2O排放和氮素淋溶特征[J]. 中国环境科学, 2021, 41(2): 813-825. doi: 10.3969/j.issn.1000-6923.2021.02.036
    [13]
    李银坤, 郭文忠, 薛绪掌, 等. 不同灌溉施肥模式对温室番茄产量、品质及水肥利用的影响[J]. 中国农业科学, 2017, 50(19): 3757-3765. doi: 10.3864/j.issn.0578-1752.2017.19.012
    [14]
    强浩然, 张国斌, 郁继华, 等. 不同水分和氮素供应对日光温室辣椒栽培基质氮转化细菌和酶活性的影响[J]. 园艺学报, 2018, 45(5): 943-958. doi: 10.16420/j.issn.0513-353x.2017-0122
    [15]
    廖桂堂, 崔阔澍, 乔善宝, 等. 四川省玉米生产发展的现状、问题及对策研究[J]. 四川农业科技, 2021(2): 57-60. doi: 10.3969/j.issn.1004-1028.2021.02.023
    [16]
    史亚兴, 张保民. 鲜食玉米的发展与前景: 探索我国甜玉米的北方市场![J]. 蔬菜, 2016(12): 1-6. doi: 10.3969/j.issn.1001-8336.2016.12.001
    [17]
    龙鹏宇, 农梦玲, 白雪, 等. 滴灌施肥蔗田土壤氧化亚氮排放与反硝化酶活性的关系[J]. 土壤通报, 2020, 51(1): 122-129. doi: 10.19336/j.cnki.trtb.2020.01.16
    [18]
    杨靖民, 张忠庆, 曹国军. 应用间隔流动分析仪测定土壤硝态氮和亚硝态氮含量[J]. 中国土壤与肥料, 2014(2): 101-105. doi: 10.11838/sfsc.20140221
    [19]
    马智勇, 贾俊香, 熊正琴, 等. 典型菜地土壤剖面N2O浓度、扩散通量与净周转率变化[J]. 应用与环境生物学报, 2019, 25(3): 611-616.
    [20]
    张珂彬, 王毅, 刘新亮, 等. 茶园氧化亚氮排放机制及减排措施研究进展[J]. 生态与农村环境学报, 2020, 36(4): 413-424. doi: 10.19741/j.issn.1673-4831.2019.0709
    [21]
    GELFAND I, YAKIR D. Influence of nitrite accumulation in association with seasonal patterns and mineralization of soil nitrogen in a semi-arid pine forest[J]. Soil Biology and Biochemistry, 2008, 40(2): 415-424. doi: 10.1016/j.soilbio.2007.09.005
    [22]
    刘广深, 徐文彬, 洪业汤, 等. 土壤N2O释放通量季节变化的主要环境驱动因素研究[J]. 矿物学报, 2002, 22(3): 229-234. doi: 10.3321/j.issn:1000-4734.2002.03.008
    [23]
    杜娅丹, 张倩, 崔冰晶, 等. 加气灌溉水氮互作对温室芹菜地N2O排放的影响[J]. 农业工程学报, 2017, 33(16): 127-134. doi: 10.11975/j.issn.1002-6819.2017.16.017
    [24]
    DI H J, CAMERON K C, PODOLYAN A, et al. Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide emissions in a grassland soil[J]. Soil Biology and Biochemistry, 2014, 73: 59-68. doi: 10.1016/j.soilbio.2014.02.011
    [25]
    王艳丽, 李虎, 孙媛, 等. 水肥一体化条件下设施菜地的N2O排放[J]. 生态学报, 2016, 36(7): 2005-2014.
    [26]
    HE L, SONG X, FENG W, et al. Improved remote sensing of leaf nitrogen concentration in winter wheat using multi-angular hyperspectral data[J]. Remote Sensing of Environment, 2016, 174: 122-133. doi: 10.1016/j.rse.2015.12.007
    [27]
    杨杉, 吴胜军, 蔡延江, 等, 硝态氮异化还原机制及其主导因素研究进展[J]. 生态学报, 2016, 36(5): 1224-1232.
    [28]
    马兰, 李晓波, 马舒坦. 双氰胺减少铵态氮肥施用后潮土N2O排放的机制[J]. 农业环境科学学报, 2021, 40(12): 2801-2808. doi: 10.11654/jaes.2021-0459
    [29]
    张艺磊, 韩建, 张丽娟, 等. 新型尿素对农田土壤N2O排放、氨挥发及土壤氮素转化的影响[J]. 江苏农业科学, 2019, 47(11): 313-316.

Catalog

    Article views (488) PDF downloads (18) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return