HE Zhili, GAO Shuang, LI Wenyan, et al. Phototransformation and photoproduct identification of dydrogesterone in water[J]. Journal of South China Agricultural University, 2023, 44(4): 495-503. DOI: 10.7671/j.issn.1001-411X.202204002
    Citation: HE Zhili, GAO Shuang, LI Wenyan, et al. Phototransformation and photoproduct identification of dydrogesterone in water[J]. Journal of South China Agricultural University, 2023, 44(4): 495-503. DOI: 10.7671/j.issn.1001-411X.202204002

    Phototransformation and photoproduct identification of dydrogesterone in water

    More Information
    • Received Date: April 01, 2022
    • Available Online: September 03, 2023
    • Published Date: April 22, 2023
    • Objective 

      To explore the phototransformation of a synthetic progestin, dydrogesterone (DYD), under simulated sunlight, and identify its potential transformation pathways.

      Method 

      Photoreactor was used to test the phototransformation process of DYD under simulated sunlight. Experiments were also conducted to explore different pH (5, 7, and 9), temperature (15, 25, and 35 ℃), and natural organic matter (NOM) concentration (0, 5, and 20 mg·L−1) on DYD phototransformation rate. Ultra-high performance liquid chromatography-time of flight mass spectrometer (UHPLC-QTOF-MS) was used to identify the potential photoproducts of DYD, and the potential transformation pathways were speculated.

      Result 

      The concentration of DYD decreased over time under simulated sunlight, indicating that phototransformation occurred in the system. DYD transformation rate was not obviously affected by the initial solution pH, and the first-order phototransformation kinetic rate constant (k) was 0.015−0.019 h−1. DYD transformation rate was facilitated by high temperature and low concentration of NOM (k increased from 0.019 h−1 to 0.027 and 0.028 h−1, respectively), but was inhibited by high concentration of NOM. UHPLC-QTOF-MS analysis showed that 19 photoproducts were generated during transformation, via hydroxylation, hydrogenation, polycondensation, and photoisomerization with subsequent ring-opening reactions.

      Conclusion 

      Phototransformation will occur for DYD in surface water, and temperature and NOM play important roles in DYD phototransformation. A total of 19 photoproducts detected in this study remain the basic molecular skeleton of DYD, indicating that these products would exhibit potential endocrine disruption to aquatic systems.

    • [1]
      KUMAR V, JOHNSON A C, TRUBIROHA A, et al. The challenge presented by progestins in ecotoxicological research: A critical review[J]. Environmental Science & Technology, 2015, 49(5): 2625-2638.
      [2]
      童心, 胡柏杨, 陈兴财, 等. 类固醇雌激素的环境暴露及其迁移转化[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 734-746.
      [3]
      DOMINGUES J T, ORLANDO R M, ALMEIDA M R, et al. Extraction of estrogen hormones from water samples using an aqueous two-phase system: A new approach for sample preparation in the analysis of emerging contaminants[J]. Microchemical Journal, 2021, 166: 106231. doi: 10.1016/j.microc.2021.106231.
      [4]
      赵砚彬, 胡建英. 环境孕激素和糖皮质激素的生态毒理效应: 进展与展望[J]. 生态毒理学报, 2016, 11(2): 6-17.
      [5]
      罗鑫. 太湖中甾体激素污染特征及生态风险研究[D]. 无锡: 江南大学, 2021.
      [6]
      ZHAO Y, CASTIGLIONI S, FENT K. Synthetic progestins medroxyprogesterone acetate and dydrogesterone and their binary mixtures adversely affect reproduction and lead to histological and transcriptional alterations in zebrafish (Danio rerio)[J]. Environmental Science & Technology, 2015, 49(7): 4636-4645.
      [7]
      PAULOS P, RUNNALLS T J, NALLANI G, et al. Reproductive responses in fathead minnow and Japanese medaka following exposure to a synthetic progestin, Norethindrone[J]. Aquatic Toxicology, 2010, 99(2): 256-262. doi: 10.1016/j.aquatox.2010.05.001
      [8]
      BESSE J P, GARRIC J. Progestagens for human use, exposure and hazard assessment for the aquatic environment[J]. Environmental Pollution, 2009, 157(12): 3485-3494. doi: 10.1016/j.envpol.2009.06.012
      [9]
      王蓓颖, 王海云. 孕激素在口服避孕药中应用[J]. 世界临床药物, 2015, 36(2): 73-76.
      [10]
      博思数据研究中心. 2014-2019年中国避孕药市场现状分析及投资前景研究报告[R/OL]. (2014-03-11) [2022-03-18]. http://www.bosidata.com/xiyao1403/S027163LS6.html.
      [11]
      ZHANG J N, CHEN J, YANG L, et al. Occurrence and fate of androgens, progestogens and glucocorticoids in two swine farms with integrated wastewater treatment systems[J]. Water Research, 2021, 192: 116836. doi: 10.1016/j.watres.2021.116836.
      [12]
      ZHANG J N, YING G G, YANG Y Y, et al. Occurrence, fate and risk assessment of androgens in ten wastewater treatment plants and receiving rivers of South China[J]. Chemosphere, 2018, 201: 644-654. doi: 10.1016/j.chemosphere.2018.02.144
      [13]
      LIU S S, YING G G, LIU S, et al. Analysis of 21 progestagens in various matrices by ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with diverse sample pretreatment[J]. Analytical and Bioanalytical Chemistry, 2014, 406(28): 7299-7311. doi: 10.1007/s00216-014-8146-4
      [14]
      PFLUG N C, HANKARD M K, BERG S M, et al. Environmental photochemistry of dienogest: Phototransformation to estrogenic products and increased environmental persistence via reversible photohydration[J]. Environmental Science Processes & Impacts, 2017, 19(11): 1414-1426.
      [15]
      PENG F Q, YING G G, YANG B, et al. Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): Transformation kinetics and products identification[J]. Chemosphere, 2014, 95: 581-588. doi: 10.1016/j.chemosphere.2013.10.013
      [16]
      KHAN B, LEE L S, SASSMAN S A. Degradation of synthetic androgens 17α- and 17β-trenbolone and trendione in agricultural soils[J]. Environmental Science & Technology, 2008, 42(10): 3570-3574.
      [17]
      QU S, KOLODZIEJ E P, CWIERTNY D M. Phototransformation rates and mechanisms for synthetic hormone growth promoters used in animal agriculture[J]. Environmental Science & Technology, 2012, 46(24): 13202-13211.
      [18]
      KOLODZIEJ E P, QU S, FORSGREN K L, et al. Identification and environmental implications of photo-transformation products of trenbolone acetate metabolites[J]. Environmental Science & Technology, 2013, 47(10): 5031-5041.
      [19]
      WAMMER K H, ANDERSON K C, ERICKSON P R, et al. Environmental photochemistry of altrenogest: Photoisomerization to a bioactive product with increased environmental persistence via reversible photohydration[J]. Environmental Science & Technology, 2016, 50(14): 7480-7488.
      [20]
      杨明, 李艳霞, 冯成洪, 等. 类固醇激素的环境行为及其影响因素[J]. 农业环境科学学报, 2012, 31(5): 849-856.
      [21]
      杨雷, 张晋娜, 史文俊, 等. 类固醇激素在环境中的污染现状及归趋[J]. 生态毒理学报, 2019, 14(5): 1-21.
      [22]
      张晋娜. 类固醇雄激素、孕激素和糖皮质激素的环境污染特征及其生物降解转化规律[D]. 广州: 中国科学院广州地球化学研究所, 2019.
      [23]
      ZHAO H N, TIAN Z Y, KIM K E, et al. Biotransformation of current-use progestin dienogest and drospirenone in laboratory-scale activated sludge systems forms high-yield products with altered endocrine activity[J]. Environmental Science & Technology, 2021, 55(20): 13869-13880.
      [24]
      盖新宇. 电化学辅助溴氨酸芳胺化[D]. 大连: 大连理工大学, 2015.
      [25]
      罗渝然, 俞书勤, 张祖德, 等. 再谈什么是活化能: Arrhenius活化能的定义、解释、以及容易混淆的物理量[J]. 大学化学, 2010, 25(3): 35-42.
      [26]
      胡斯勒图, 施建成, 李明, 等. 基于卫星数据的地表下行短波辐射估算: 方法、进展及问题[J]. 中国科学:地球科学, 2020, 50(7): 887-902.
      [27]
      陈志华, 陈滨滨, 刘红波. 钢结构常用涂料太阳辐射吸收系数试验研究[J]. 建筑结构学报, 2014, 35(5): 81-87. doi: 10.14006/j.jzjgxb.2014.05.014
      [28]
      TANG T, SHI T Y, LI D G, et al. Adsorption properties and degradation dynamics of endocrine-disrupting chemical levonorgestrel in soils[J]. Journal of Agricultural and Food Chemistry, 2012, 60(16): 3999-4004. doi: 10.1021/jf300479z
      [29]
      YANG X J, DAI X, ZHANG Y L, et al. Sorption, desorption, and transformation of synthetic progestins in soil and sediment systems[J]. Geoderma, 2020, 362(C): 114141. doi: 10.1016/j.geoderma.2019.114141.
      [30]
      WISHART D S, FEUNANG Y D, GUO A C, et al. DrugBank 5.0: A major update to the DrugBank database for 2018[J]. Nucleic Acids Research, 2018, 46(D1): D1074-D1082. doi: 10.1093/nar/gkx1037
      [31]
      张黎, 姜力杨, 盖歆楠, 等. 风机叶片材料雷击热损伤特性及损伤机制的分子动力学研究[J]. 中国电机工程学报, 2020, 40(3): 1009-1020. doi: 10.13334/J.0258-8013.PCSEE.181425
      [32]
      CWIERTNY D M, SNYDER S A, SCHLENK D, et al. Environmental designer drugs: When transformation may not eliminate risk[J]. Environmental Science & Technology, 2014, 48(20): 11737-11745.
      [33]
      崔子硕, 欧晓霞, 王驭晗, 等. 有机污染物光降解过程中活性中间体的研究进展[J]. 广州化工, 2019, 47(9): 23-26. doi: 10.3969/j.issn.1001-9677.2019.09.014
      [34]
      于莉莉, 钟晔, 孙福红, 等. pH值对滇池水体溶解性有机质(DOM)光降解作用的影响[J]. 光谱学与光谱分析, 2019, 39(8): 2533-2539.
      [35]
      郭忠禹, 陈景文, 张思玉, 等. 天然水中溶解性有机质对有机微污染物光化学转化的影响[J]. 科学通报, 2020, 65(26): 2786-2803.
    • Cited by

      Periodical cited type(1)

      1. 高文丽,苏海兰,林凤芳,牛雨晴,朱育菁,刘波,程曦,肖荣凤. 福建省多花黄精根腐病的病原菌鉴定. 福建农业学报. 2024(05): 600-608 .

      Other cited types(0)

    Catalog

      Article views (110) PDF downloads (16) Cited by(1)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return