Citation: | HU Lian, LIU Hailong, HE Jie, et al. Research progress and prospect of intelligent weeding robot[J]. Journal of South China Agricultural University, 2023, 44(1): 34-42. DOI: 10.7671/j.issn.1001-411X.202203060 |
Weed control is an important issue that must be faced in agricultural production. With the integration of robotics and automation technology into agricultural production, various weeding robots emerge as the times require, effectively reducing the pollution of chemicals to the environment. In this paper, the research status of intelligent sensing technology, robot platform and weeding device of weeding robot are reviewed, and the shortcomings of crop row and weed identification technology, structure of weeding robot platform and intelligent control method of mechanical weeding device are analyzed. The future development trend of intelligent weeding robot is prospected from four aspects of intelligent perception, precise weeding, efficient operation and intelligent management.
[1] |
李江国, 刘占良, 张晋国, 等. 国内外田间机械除草技术研究现状[J]. 农机化研究, 2006, 28(10): 14-16. doi: 10.3969/j.issn.1003-188X.2006.10.006
|
[2] |
李东升, 张莲洁, 盖志武, 等. 国内外除草技术研究现状[J]. 森林工程, 2002, 18(1): 17-18.
|
[3] |
ÅSTRAND B, BAERVELDT A J. An agricultural mobile robot with vision-based perception for mechanical weed control[J]. Autonomous Robots, 2002, 13(1): 21-35. doi: 10.1023/A:1015674004201
|
[4] |
BLASCO J, ALEIXOS N, ROGER J M, et al. AE-automation and emerging technologies: Robotic weed control using machine vision[J]. Biosystems Engineering, 2002, 83(2): 149-157. doi: 10.1006/bioe.2002.0109
|
[5] |
陈浩, 杨亚莉. 保护性耕作模式下非化学除草技术的研究[J]. 农机化研究, 2011, 33(9): 241-244. doi: 10.3969/j.issn.1003-188X.2011.09.061
|
[6] |
兰天, 李端玲, 张忠海, 等. 智能农业除草机器人研究现状与趋势分析[J]. 计算机测量与控制, 2021, 29(5): 1-7.
|
[7] |
王海江. 农业机械智能化设计技术发展现状与展望[J]. 当代农机, 2021(4): 49-50.
|
[8] |
高文英. 浅议现代农业机械智能化的应用与发展[J]. 南方农机, 2020, 51(11): 65. doi: 10.3969/j.issn.1672-3872.2020.11.043
|
[9] |
王树才. 农业机器人的应用领域、特点及支撑技术[J]. 华中农业大学学报, 2005, 24(S1): 86-90.
|
[10] |
孟笑天. 基于机器视觉的农田苗带识别技术研究[D]. 长春: 吉林农业大学, 2020.
|
[11] |
MARR D, HILDRETH E. Theory of edge detection[J]. Proceedings of the Royal Society B: Biological Sciences, 1980, 207(1167): 187-217.
|
[12] |
LHUILLIER M, QUAN L. Robust dense matching using local and global geometric constraints[C]//2000 15th International Conference on Pattern Recognition (ICPR’00). Barcelona: IEEE, 2000: 968-972.
|
[13] |
REID J F, SEARCY S W. An algorithm for computer vision sensing of a row crop guidance directrix[J]. Journal of Commercial Vehicles, 1991, 100: 93-105.
|
[14] |
FONTAINE V, CROWE T G. Development of line-detection algorithms for local positioning in densely seeded crops[J]. Canadian Society for Bioengineering, 2006, 48: 719-729.
|
[15] |
GÉE C, BOSSU J, JONES G, et al. Crop/weed discrimination in perspective agronomic images[J]. Computers and Electronics in Agriculture, 2008, 60(1): 49-59. doi: 10.1016/j.compag.2007.06.003
|
[16] |
李茗萱, 张漫, 孟庆宽, 等. 基于扫描滤波的农机具视觉导航基准线快速检测方法[J]. 农业工程学报, 2013, 29(1): 41-47.
|
[17] |
翟志强, 朱忠祥, 杜岳峰, 等. 基于Census变换的双目视觉作物行识别方法[J]. 农业工程学报, 2016, 32(11): 205-213. doi: 10.11975/j.issn.1002-6819.2016.11.029
|
[18] |
陈子文, 李伟, 张文强, 等. 基于自动Hough变换累加阈值的蔬菜作物行提取方法研究[J]. 农业工程学报, 2019, 35(22): 314-322. doi: 10.11975/j.issn.1002-6819.2019.22.037
|
[19] |
罗晨晖. 多信息特征融合的作物行识别与路径规划研究[D]. 镇江: 江苏大学, 2020.
|
[20] |
CHOI K H, HAN S K, HAN S H, et al. Morphology-based guidance line extraction for an autonomous weeding robot in paddy fields[J]. Computers and Electronics in Agriculture, 2015, 113: 266-274. doi: 10.1016/j.compag.2015.02.014
|
[21] |
曾勇, 熊瑛, 向阳, 等. 基于机器视觉的田间水稻苗列识别算法的研究[J]. 湖南农业大学学报(自然科学版), 2018, 44(3): 320-325.
|
[22] |
王姗姗, 余山山, 张文毅, 等. 基于特征点邻域Hough变换的水稻秧苗行检测[J]. 农业机械学报, 2020, 51(10): 18-25. doi: 10.6041/j.issn.1000-1298.2020.10.003
|
[23] |
黄小刚. 水田除草机器人视觉导航路径与参数获取方法研究[D]. 广州: 华南理工大学, 2013.
|
[24] |
贺静, 何杰, 罗锡文, 等. 基于多传感器融合的水稻行识别与跟踪导航研究[J]. 农业机械学报, 2022, 53(3): 18-26. doi: 10.6041/j.issn.1000-1298.2022.03.002
|
[25] |
HE J, ZANG Y, LUO X, et al. Visual detection of rice rows based on Bayesian decision theory and robust regression least squares method[J]. International Journal of Agricultural and Biological Engineering, 2021, 14(1): 199-206. doi: 10.25165/j.ijabe.20211401.5910
|
[26] |
ZHAO R M, HU L, LUO X W, et al. A novel approach for describing and classifying the unevenness of the bottom layer of paddy fields[J]. Computers and Electronics in Agriculture, 2019, 162: 552-560. doi: 10.1016/j.compag.2019.01.010
|
[27] |
HU L, LIN C X, LUO X W, et al. Design and experiment on auto leveling control system of agricultural implements[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(8): 15-20.
|
[28] |
李南. 基于机器视觉的锄草机器人快速作物识别方法研究[D]. 北京: 中国农业大学, 2017.
|
[29] |
侯雨. 基于图像处理的大豆杂草识别方法研究[D]. 长春: 吉林农业大学, 2020.
|
[30] |
何迪. 美国、日本、德国农业信息化发展比较与经验借鉴[J]. 世界农业, 2017(3): 164-170.
|
[31] |
SABZI S, ABBASPOUR-GILANDEH Y, ARRIBAS J I. An automatic visible-range video weed detection, segmentation and classification prototype in potato field[J]. Heliyon, 2020, 6(5): e3685.
|
[32] |
WU Z, CHEN Y, ZHAO B, et al. Review of weed detection methods based on computer vision[J]. Sensors. 2021, 21(11): 3647. doi: 10.3390/s21113647.
|
[33] |
ARROYO J, GUIJARRO M, PAJARES G. An instance-based learning approach for thresholding in crop images under different outdoor conditions[J]. Computers and Electronics in Agriculture, 2016, 127: 669-679. doi: 10.1016/j.compag.2016.07.018
|
[34] |
王佳玉, 刘立群, 常琴, 等. 基于农业图像处理的杂草分割[J]. 电脑知识与技术, 2021, 17(17): 17-20.
|
[35] |
吴兰兰, 徐恺, 熊利荣. 基于视觉注意模型的苗期油菜田间杂草检测[J]. 华中农业大学学报, 2018, 37(2): 96-102.
|
[36] |
苗中华, 余孝有, 徐美红, 等. 基于图像处理多算法融合的杂草检测方法及试验[J]. 智慧农业(中英文), 2020, 2(4): 103-115.
|
[37] |
王璨, 李志伟. 利用融合高度与单目图像特征的支持向量机模型识别杂草[J]. 农业工程学报, 2016, 32(15): 165-174. doi: 10.11975/j.issn.1002-6819.2016.15.023
|
[38] |
TIWARI O, GOYAL V, KUMAR P, et al. An experimental set up for utilizing convolutional neural network in automated weed detection[C]//Proceedings of the 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU). Ghaziabad, India: IEEE, 2019: 1–6.
|
[39] |
彭明霞, 夏俊芳, 彭辉. 融合FPN的Faster R-CNN复杂背景下棉田杂草高效识别方法[J]. 农业工程学报, 2019, 35(20): 202-209. doi: 10.11975/j.issn.1002-6819.2019.20.025
|
[40] |
DOS SANTOS FERREIRA A, MATTE FREITAS D, GONÇALVES DA SILVA G, et al. Weed detection in soybean crops using ConvNets[J]. Computers and Electronics in Agriculture, 2017, 143: 314-324. doi: 10.1016/j.compag.2017.10.027
|
[41] |
乔永亮, 何东健, 赵川源, 等. 基于多光谱图像和SVM的玉米田间杂草识别[J]. 农机化研究, 2013, 35(8): 30-34. doi: 10.13427/j.cnki.njyi.2013.08.020
|
[42] |
尚建伟, 蒋红海, 喻刚, 等. 基于深度学习的杂草识别系统[J]. 软件导刊, 2020, 19(7): 127-130.
|
[43] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
|
[44] |
孙俊, 何小飞, 谭文军, 等. 空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草[J]. 农业工程学报, 2018, 34(11): 159-165. doi: 10.11975/j.issn.1002-6819.2018.11.020
|
[45] |
徐艳蕾, 何润, 翟钰婷, 等. 基于轻量卷积网络的田间自然环境杂草识别方法[J]. 吉林大学学报(工学版), 2021, 51(6): 2304-2312. doi: 10.13229/j.cnki.jdxbgxb20200733
|
[46] |
朱熠. 面向株间除草的苗期作物识别与定位方法研究[D]. 武汉: 湖北工业大学, 2020.
|
[47] |
刘庆飞. 农业场景下卷积神经网络的应用研究[D]. 乌鲁木齐: 新疆大学, 2019.
|
[48] |
WANG A C, ZHANG W, WEI X H. A review on weed detection using ground-based machine vision and image processing techniques[J]. Computers and Electronics in Agriculture, 2019, 158: 226-240. doi: 10.1016/j.compag.2019.02.005
|
[49] |
邓向武, 齐龙, 马旭, 等. 基于多特征融合和深度置信网络的稻田苗期杂草识别[J]. 农业工程学报, 2018, 34(14): 165-172. doi: 10.11975/j.issn.1002-6819.2018.14.021
|
[50] |
YU J, SHARPE S M, SCHUMANN A W, et al. Detection of broadleaf weeds growing in turfgrass with convolutional neural networks[J]. Pest Management Science, 2019, 75(8): 2211-2218. doi: 10.1002/ps.5349
|
[51] |
陈景帅. 农业机器人的主要应用领域和关键技术[J]. 电子技术与软件工程, 2019(17): 90-91.
|
[52] |
于文静. 我国将加快农业人工智能研发应用[J]. 当代农机, 2020(2): 10.
|
[53] |
朱磊磊, 陈军. 轮式移动机器人研究综述[J]. 机床与液压, 2009, 37(8): 242-247. doi: 10.3969/j.issn.1001-3881.2009.08.079
|
[54] |
罗锡文, 区颖刚, 赵祚喜, 等. 农用智能移动作业平台模型的研制[J]. 农业工程学报, 2005, 21(2): 83-85. doi: 10.3321/j.issn:1002-6819.2005.02.018
|
[55] |
张春龙, 黄小龙, 耿长兴, 等. 智能锄草机器人系统设计与仿真[J]. 农业机械学报, 2011, 42(7): 196-199.
|
[56] |
樊正强. 四驱农业机器人移动平台协调运动控制研究[D]. 保定: 河北农业大学, 2018.
|
[57] |
BAKKER T, VAN ASSELT K, BONTSEMA J, et al. Autonomous navigation using a robot platform in a sugar beet field[J]. Biosystems Engineering, 2011, 109(4): 357-368. doi: 10.1016/j.biosystemseng.2011.05.001
|
[58] |
于鑫, 孙裕晶, 赵伟程, 等. 基于非结构化环境的农用全方位移动平台的结构设计[J]. 内燃机与配件, 2017(13): 1-3. doi: 10.3969/j.issn.1674-957X.2017.13.001
|
[59] |
王瑞丰. 水田大跨度埂上行走装置控制系统设计[D]. 沈阳: 沈阳农业大学, 2020.
|
[60] |
顾宝兴, 姬长英, 王海青, 等. 农用开放式智能移动平台研制[J]. 农业机械学报, 2012, 43(4): 173-178. doi: 10.6041/j.issn.1000-1298.2012.04.032
|
[61] |
王子健, 高自成, 李立君, 等. 履带式双轴除草机的研制与试验[J]. 林业工程学报, 2018, 3(4): 118-124.
|
[62] |
倪银堂, 陈贵江, 张超. 农业机器人移动平台的研究现状与趋势[J]. 南方农机, 2018, 49(18): 5. doi: 10.3969/j.issn.1672-3872.2018.18.004
|
[63] |
卢衷正, 戈振扬, 丁巍. 四足除草机器人的ADAMS与MATLAB联合仿真[J]. 机械科学与技术, 2016, 35(3): 375-380. doi: 10.13433/j.cnki.1003-8728.2016.0309
|
[64] |
卢衷正. 基于虚拟样机技术的四足除草机器人结构设计和仿真[D]. 昆明: 昆明理工大学, 2015.
|
[65] |
张良安, 唐锴, 赵永杰, 等. 四足激光除草机器人腿部结构参数优化[J]. 农业工程学报, 2020, 36(2): 7-15. doi: 10.11975/j.issn.1002-6819.2020.02.002
|
[66] |
AMER G, MUDASSIR S M M, MALIK M A. Design and operation of Wi-Fi agribot integrated integrated system[C]// 2015 International Conference on Industrial Instrumentation and Control. Piscataway: IEEE, 2015: 207-212.
|
[67] |
李峙峰. 轮履式复合底盘结构设计与研究[D]. 西安: 长安大学, 2017.
|
[68] |
陶春鸣. 水田履带轮式施药机设计与底盘试验[D]. 镇江: 江苏大学, 2019.
|
[69] |
苏磊, 侯宇, 吴飞, 等. 轮足式机器人机构设计及越障性能分析[J]. 机械设计与制造, 2016(8): 46-48. doi: 10.3969/j.issn.1001-3997.2016.08.013
|
[70] |
GRAND C, BENAMAR F, PLUMET F. Motion kinematics analysis of wheeled–legged rover over 3D surface with posture adaptation[J]. Mechanism and Machine Theory, 2010, 45(3): 477-495. doi: 10.1016/j.mechmachtheory.2009.10.007
|
[71] |
张铁中, 杨丽, 陈兵旗, 等. 农业机器人技术研究进展[J]. 中国科学: 信息科学, 2010, 40(S1): 71-87.
|
[72] |
胡炼, 罗锡文, 严乙桉, 等. 基于爪齿余摆运动的株间机械除草装置研制与试验[J]. 农业工程学报, 2012, 28(14): 10-16.
|
[73] |
胡炼, 罗锡文, 曾山, 等. 基于机器视觉的株间机械除草装置的作物识别与定位方法[J]. 农业工程学报, 2013, 29(10): 12-18.
|
[74] |
胡炼, 林潮兴, 杨伟伟, 等. 基于智能相机控制的横摆式株间机械除草系统设计[J]. 湖南工业职业技术学院学报, 2014, 14(4): 1-3.
|
[75] |
胡炼, 罗锡文, 张智刚, 等. 基于余摆运动的株间机械除草爪齿避苗控制算法[J]. 农业工程学报, 2012, 28(23): 12-18.
|
[76] |
胡炼, 罗锡文, 张智刚, 等. 株间除草装置横向偏移量识别与作物行跟踪控制[J]. 农业工程学报, 2013, 29(14): 8-14.
|
[77] |
王刚, 刘慧力, 贾洪雷, 等. 触碰定位式玉米行间除草装置的设计与试验[J]. 吉林大学学报(工学版), 2021, 51(4): 1518-1527. doi: 10.13229/j.cnki.jdxbgxb20200264
|
[78] |
权龙哲, 王旗, 张景禹, 等. 立式旋转智能株间机械除草装置设计与试验[J]. 江苏大学学报(自然科学版), 2021, 42(5): 582-588.
|
[79] |
MIDTIBY H S, GISELSSON T M, JØRGENSEN R N. Estimating the plant stem emerging points (PSEPs) of sugar beets at early growth stages[J]. Biosystems Engineering, 2012, 111(1): 83-90. doi: 10.1016/j.biosystemseng.2011.10.011
|
[80] |
PÉREZ-RUÍZ M, SLAUGHTER D C, GLIEVER C J, et al. Automatic GPS-based intra-row weed knife control system for transplanted row crops[J]. Computers and Electronics in Agriculture, 2012, 80: 41-49. doi: 10.1016/j.compag.2011.10.006
|
[81] |
PÉREZ-RUÍZ M, SLAUGHTER D C, FATHALLAH F A, et al. Co-robotic intra-row weed control system[J]. Biosystems Engineering, 2014, 126: 45-55. doi: 10.1016/j.biosystemseng.2014.07.009
|
[82] |
TILLETT N D, HAGUE T, GRUNDY A C, et al. Mechanical within-row weed control for transplanted crops using computer vision[J]. Biosystems Engineering, 2008, 99(2): 171-178. doi: 10.1016/j.biosystemseng.2007.09.026
|
[83] |
DEDOUSIS A. An investigation into the design of precision weeding mechanisms for inter or intra-row weed control[D]. Cranfield, Bedford-shire: Cranfield University, 2007.
|
[84] |
JEON H Y, TIAN L F. Direct application end effector for a precise weed control robot[J]. Biosystems Engineering, 2009, 104(4): 458-464. doi: 10.1016/j.biosystemseng.2009.09.005
|
[85] |
郭伟斌, 陈勇, 侯学贵, 等. 除草机器人机械臂的逆向求解与控制[J]. 农业工程学报, 2009, 25(4): 108-112.
|