• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
ZHANG Jian, WU Zhenfang, YANG Huaqiang. Resistance to blue ear disease and production performance assessment of CD163 gene-edited Large White pigs[J]. Journal of South China Agricultural University, 2023, 44(3): 333-339. DOI: 10.7671/j.issn.1001-411X.202203033
Citation: ZHANG Jian, WU Zhenfang, YANG Huaqiang. Resistance to blue ear disease and production performance assessment of CD163 gene-edited Large White pigs[J]. Journal of South China Agricultural University, 2023, 44(3): 333-339. DOI: 10.7671/j.issn.1001-411X.202203033

Resistance to blue ear disease and production performance assessment of CD163 gene-edited Large White pigs

More Information
  • Received Date: March 17, 2022
  • Available Online: May 17, 2023
  • Objective 

    The purpose of this study was to generate CD163 gene knockout (CD163-KO) Large White pigs by CRISPR/Cas9 gene editing and somatic cell nuclear transfer technologies, investigate the resistance to blue ear disease and the biosafety effect including physiology, productive and reproductive performances of the gene knockout pigs, and assess the main production performances of CD163-KO Large White pigs.

    Method 

    In this study, the 11 CD163-KO pigs and five age- and body weight-matched wild type Large White pigs were challenged with NADC30-like strain of porcine reproductive and respiratory syndrome virus (PRRSV). The rectal temperature, PRRSV antibody and virus variation were monitored continuously for 14 days. The lung tissues were examined by immunofluorescence of PRRSV antigen. Expression of CD163 protein on the surface of pulmonary alveolar macrophages in wild type and CD163-KO Large White pigs were examined through immunofluorescence staining. We compared the differentiation potential of monocytes into macrophages between CD163-KO and wild type pigs, and observed their uptake capacities to hemoglobin-haptoglobin complex. In addition, we analyzed the growth and reproductive production of the boars between CD163-KO pigs and wild type control to assess their biosafety and breeding value.

    Result 

    CD163-KO pigs were completely resistant to NADC30-like strain without impairing the biological function associated with the modified gene, as well as productive and reproductive performances.

    Conclusion 

    This study is an evidence and supplement of CD163-KO pigs resistance to blue ear disease, and demonstrates that CD163 gene knockout has no potentially negative effects on production performance, which provides evidences for the biosecurity of CD163-KO pigs.

  • [1]
    HAN J, ZHOU L, GE X, et al. Pathogenesis and control of the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus[J]. Veterinary Microbiology, 2017, 209: 30-47. doi: 10.1016/j.vetmic.2017.02.020
    [2]
    TIAN K, YU X, ZHAO T, et al. Emergence of fatal PRRSV variants: Unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark[J]. PLoS One, 2007, 2(6): e526. doi: 10.1371/journal.pone.0000526
    [3]
    ZHAO K, YE C, CHANG X, et al. Importation and recombination are responsible for the latest emergence of highly pathogenic porcine reproductive and respiratory syndrome virus in China[J]. Journal of Virology, 2015, 89(20): 10712-10716. doi: 10.1128/JVI.01446-15
    [4]
    WANG H M, LIU Y G, TANG Y D, et al. A natural recombinant PRRSV between HP-PRRSV JXA1-like and NADC30-like strains[J]. Transboundary and Emerging Diseases, 2018, 65(4): 1078-1086. doi: 10.1111/tbed.12852
    [5]
    YU Y, ZHANG Q, CAO Z, et al. Recent advances in porcine reproductive and respiratory syndrome virus NADC30-like research in China: Molecular characterization, pathogenicity, and control[J]. Frontiers in Microbiology, 2022, 12: 791313. doi: 10.3389/fmicb.2021.791313.
    [6]
    ZHOU L, YANG B, XU L, et al. Efficacy evaluation of three modified-live virus vaccines against a strain of porcine reproductive and respiratory syndrome virus NADC30-like[J]. Veterinary Microbiology, 2017, 207: 108-116. doi: 10.1016/j.vetmic.2017.05.031
    [7]
    CHAI W, LIU Z, SUN Z, et al. Efficacy of two porcine reproductive and respiratory syndrome (PRRS) modified-live virus (MLV) vaccines against heterologous NADC30-like PRRS virus challenge[J]. Veterinary Microbiology, 2020, 248: 108805. doi: 10.1016/j.vetmic.2020.108805.
    [8]
    RENUKARADHYA G J, MENG X J, CALVERT J G, et al. Inactivated and subunit vaccines against porcine reproductive and respiratory syndrome: Current status and future direction[J]. Vaccine, 2015, 33(27): 3065-3072. doi: 10.1016/j.vaccine.2015.04.102
    [9]
    熊胜利, 龙清孟, 陈大方, 等. 抗病育种技术在引进美国SPF种猪后代选育中应用探究[J]. 养猪, 2014(3): 73-74. doi: 10.13257/j.cnki.21-1104/s.2014.03.028
    [10]
    YUAN H, YANG L, ZHANG Y, et al. Current status of genetically modified pigs that are resistant to virus infection[J]. Viruses, 2022, 14(2): 417. doi: 10.3390/v14020417.
    [11]
    PROUDFOOT C, LILLICO S, TAIT-BURKARD C. Genome editing for disease resistance in pigs and chickens[J]. Animal Frontiers, 2019, 9(3): 6-12. doi: 10.1093/af/vfz013
    [12]
    WHITWORTH K M, ROWLAND R R R, EWEN C L, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nature Biotechnology, 2016, 34(1): 20-22. doi: 10.1038/nbt.3434
    [13]
    YANG H, ZHANG J, ZHANG X, et al. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus[J]. Antiviral Research, 2018, 151: 63-70.
    [14]
    BURKARD C, LILLICO S G, REID E, et al. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J]. PLOS Pathogens, 2017, 13(2): e1006206. doi: 10.1371/journal.ppat.1006206
    [15]
    WELCH S K W, CALVERT J G. A brief review of CD163 and its role in PRRSV infection[J]. Virus Research, 2010, 154(1/2): 98-103. doi: 10.1016/j.virusres.2010.07.018
    [16]
    XU Y, WU S, LI Y, et al. A porcine alveolar macrophage cell line stably expressing CD163 demonstrates virus replication and cytokine secretion characteristics similar to primary alveolar macrophages following PRRSV infection[J]. Veterinary Microbiology, 2020, 244: 108690. doi: 10.1016/j.vetmic.2020.108690.
    [17]
    XU K, ZHOU Y, MU Y, et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J]. eLife, 2020, 9: e57132.
    [18]
    韩晓松, 高杨, 刘海龙, 等. 利用CRISPR/Cas9技术制备CD163基因SRCR5序列敲除猪[J]. 农业生物技术学报, 2020, 28(9): 1535-1542.
    [19]
    GUO C, WANG M, ZHU Z, et al. Highly efficient generation of pigs harboring a partial deletion of the CD163 SRCR5 domain, which are fully resistant to porcine reproductive and respiratory syndrome virus 2 infection[J]. Frontiers in Immunology, 2019, 10: 1846. doi: 10.3389/fimmu.2019.01846.
    [20]
    CHEN J, WANG H, BAI J, et al. Generation of pigs resistant to highly pathogenic-porcine reproductive and respiratory syndrome virus through gene editing of CD163[J]. International Journal of Biological Sciences, 2019, 15(2): 481-492. doi: 10.7150/ijbs.25862
    [21]
    VAN GORP H, VAN BREEDAM W, DELPUTTE P L, et al. Sialoadhesin and CD163 join forces during entry of the porcine reproductive and respiratory syndrome virus[J]. Journal of General Virology, 2008, 89: 2943-2953. doi: 10.1099/vir.0.2008/005009-0
    [22]
    ZHANG Q, YOO D. PRRS virus receptors and their role for pathogenesis[J]. Veterinary Microbiology, 2015, 177(3/4): 229-241.
    [23]
    VAN BREEDAM W, VERBEECK M, CHRISTIAENS I, et al. Porcine, murine and human sialoadhesin (Sn/Siglec-1/CD169): Portals for porcine reproductive and respiratory syndrome virus entry into target cells[J]. Journal of General Virology, 2013, 94: 1955-1960.
    [24]
    GRAVERSEN J H, MADSEN M, MOESTRUP S K. CD163: A signal receptor scavenging haptoglobin-hemoglobin complexes from plasma[J]. International Journal of Biochemistry & Cell Biology, 2002, 34(4): 309-314.
    [25]
    KRISTIANSEN M, GRAVERSEN J H, JACOBSEN C, et al. Identification of the haemoglobin scavenger receptor[J]. Nature, 2001, 409(6817): 198-201. doi: 10.1038/35051594
    [26]
    SCHAER C A, VALLELIAN F, IMHOF A, et al. CD163-expressing monocytes constitute an endotoxin-sensitive Hb clearance compartment within the vascular system[J]. Journal of Leukocyte Biology, 2007, 82(1): 106-110. doi: 10.1189/jlb.0706453
    [27]
    石俊松, 周荣, 曾海玉, 等. 体细胞克隆猪繁殖性能及后代生长性能评估[J]. 华南农业大学学报, 2019, 40(S1): 100-103.
    [28]
    ADACHI N, YAMAGUCHI D, WATANABE A, et al. Growth, reproductive performance, carcass characteristics and meat quality in F1 and F2 progenies of somatic cell-cloned pigs[J]. Joural of Reproduction and Development, 2014, 60(2): 100-105. doi: 10.1262/jrd.2012-167
    [29]
    KAWARASAKI T, ENYA S, OTAKE M, et al. Reproductive performance and expression of imprinted genes in somatic cell cloned boars[J]. Animal Science Journal, 2017, 88(11): 1801-1810. doi: 10.1111/asj.12838
  • Cited by

    Periodical cited type(26)

    1. 陈学深,熊悦淞,程楠,马旭,齐龙. 自适应振动式稻田株间柔性机械除草性能试验. 吉林大学学报(工学版). 2024(02): 375-384 .
    2. 桑世飞,孙晓涵,姚国琴,马腾云,章怡静,郑阳阳,丰柳春,姬生栋. 抗ALS抑制剂类除草剂分子标记的开发及应用. 中国稻米. 2024(04): 17-23 .
    3. 陈海荣,陈应海,车年萍,周绍琴,史扬杰. 适用于条播水稻机械除草作业的对行纠偏控制系统设计与试验. 农业装备技术. 2024(03): 41-44 .
    4. 胡钧烜,牛坡,郑岩,刘恩泽. 基于Matlab手扶式除草机振动分析及优化. 农业与技术. 2024(13): 52-57 .
    5. 何淑洁,孔德就,李鹏. 新能源农机装备的发展现状与趋势. 广西农学报. 2024(02): 68-75 .
    6. 杨颖,杨宁,邹世彦,张秀明,王明丽. 自走乘坐式水田除草机设计与试验. 农机市场. 2024(09): 56-58 .
    7. 李世柱,王立军. 机械除草技术装备应用调研及发展建议. 农业工程. 2024(09): 19-22 .
    8. 王文明,陶冶. 丘陵山区小型茶园除草机设计与试验. 中国农机装备. 2024(11): 86-89 .
    9. 陈佶,刘伟华. 稻田机械除草技术装备研究与应用现状. 农业工程. 2024(11): 17-22 .
    10. 靳文停,王深研,钱海峰,李文龙,杨家豪,马浏轩. 基于LS-DYNA的水田株间除草爪切削土壤仿真分析. 农机化研究. 2023(03): 203-209 .
    11. 马永明. 水稻插秧机的复合作业探索. 农机使用与维修. 2023(02): 27-30 .
    12. 李立军,黄福平,王烨. 割草无人车Web端管控系统设计. 数字通信世界. 2023(03): 191-193 .
    13. 赵前程. 辽宁沈阳地区水稻机械化优质栽培技术. 特种经济动植物. 2023(06): 128-130 .
    14. 赵晋,黄赟,翁晓星,刘丹,戴津婧. 水稻田间除草装备现状与分析. 农业开发与装备. 2023(06): 33-35 .
    15. 卢天妹. 智能化技术在水稻生产全程机械化中的应用研究与发展趋势. 农业工程技术. 2023(17): 31-32 .
    16. 焦晋康,胡炼,陈高隆,涂团鹏,王志敏,臧英. 水田行间除草装置设计与试验. 农业工程学报. 2023(24): 11-22 .
    17. 靳文停,周成,马浏轩,葛宜元. 有机稻田株间目标识别及机械除草技术综述. 农机化研究. 2022(08): 9-14 .
    18. 周志强. 水田机械除草技术的研究现状与发展趋势. 南方农机. 2022(05): 16-18+28 .
    19. 金佳俊,谢东升,邵圣乐,奚小波. 往复摆动式水田机械除草机的设计. 农业装备技术. 2022(02): 14-16 .
    20. 方会敏,牛萌萌,薛新宇,姬长英. 玉米田间机械-化学协同除草的杂草防除效果. 农业工程学报. 2022(06): 44-51 .
    21. 陈学深,方根杜,熊悦淞,王宣霖,武涛. 基于稻田除草部件横向偏距视觉感知的对行控制系统设计与试验. 华南农业大学学报. 2022(05): 83-91 . 本站查看
    22. 靳文停,葛宜元,樊文武,马浏轩,李文龙,杨荣敏. 倒V型稻田株间除草装置虚拟仿真及验证. 中国农机化学报. 2022(10): 72-77 .
    23. 唐伟,徐红星,董卉,杨永杰,郑承梅,陆永良. 我国水稻田除草剂同步用药现状与发展趋势. 杂草学报. 2022(02): 1-5 .
    24. 李姝然. 农田杂草机械化控制技术现状与特点. 农机使用与维修. 2022(11): 143-145 .
    25. 王金武,马骁驰,唐汉,王奇,吴亦鹏,张振江. 曲面轮齿斜置式稻田行间除草装置设计与试验. 农业机械学报. 2021(04): 91-100 .
    26. 王金峰,翁武雄,鞠金艳,陈鑫胜,王金武,王汉龙. 基于遥控转向的稻田行间除草机设计与试验. 农业机械学报. 2021(09): 97-105 .

    Other cited types(12)

Catalog

    Article views (611) PDF downloads (46) Cited by(38)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return