Citation: | YUAN Ting, LUO Longhui, ZHANG Xueyin, et al. Establishment of IMSA-LAMP detection method for Ralstonia solanacearu[J]. Journal of South China Agricultural University, 2022, 43(4): 89-98. DOI: 10.7671/j.issn.1001-411X.202203030 |
Mulberry bacterial wilt is a seriously harmful bacterial disease caused by Ralstonia solanacearum. Therefore, it is of great significance to establish a rapid and sensitive detection method for R. solanacearum to effectively control mulberry bacterial wilt.
Pectate lyase gene of R. solanacearum was used as the target. Based on the primer design principle of isothermal multiple self-matching-initiated amplification (IMSA), combining the loop-mediated isothermal amplification (LAMP) reaction system, a rapid and effective IMSA-LAMP method for detection ofR. solanacearum was established. The optimal reaction parameters of this method were screened.
The IMSA-LAMP method based on pectate lyase gene could complete the specific detection of positive samples within 45 min at 64.5 ℃, and the detection sensitivity of R. solanacearum template DNA was 200 fg/μL (the corresponding bacteria detection sensitivity was 1 × 102 CFU/mL); The detection rate of suspected mulberry bacterial wilt samples collected in production was 87.5%.
This method has good practicability and can provide new technical support for the rapid detection, diagnosis and epidemic prevention of mulberry bacterial wilt.
[1] |
LIM S H, CHOI C I. Pharmacological properties of Morus nigra L. (black mulberry) as a promising nutraceutical resource[J]. Nutrients, 2019, 11(2): 437. doi: 10.3390/nu11020437.
|
[2] |
YUAN Q, ZHAO L. The mulberry (Morus alba L. ) fruit: A review of characteristic components and health benefits[J]. Journal of Agricultural and Food Chemistry, 2017, 65(48): 10383-10394. doi: 10.1021/acs.jafc.7b03614
|
[3] |
CAI M, MU L, WANG Z, et al. Assessment of mulberry leaf as a potential feed supplement for animal feeding in P. R. China[J]. Asian-Australasian Journal of Animal Sciences, 2019, 32(8): 1145-1152. doi: 10.5713/ajas.18.0671
|
[4] |
王越, 童金林, 叶伟清, 等. 桑青枯病发生原因及防治对策[J]. 中国蚕业, 2006, 27(4): 25-26. doi: 10.3969/j.issn.1007-0982.2006.04.009
|
[5] |
肖练章, 朱志德, 何坤良, 等. 桑细菌性青枯病发病规律研究[J]. 广东蚕丝通讯, 1982(2): 3-5.
|
[6] |
朱燕, 叶志毅, 吕志强, 等. 桑树青枯病的分布危害和防治的研究进展[J]. 蚕桑通报, 2005, 36(1): 6-9. doi: 10.3969/j.issn.0258-4069.2005.01.002
|
[7] |
毛铿祖. 广东桑青枯病的发生与防治[J]. 中国蚕业, 1996, 30(4): 64-66.
|
[8] |
赖文姜, 曾宪铭, 谭炳安, 等. 桑青枯病病原细菌的鉴定[J]. 华南农学院学报, 1982, 3(1): 66-73.
|
[9] |
LOWE-POWER T M, KHOKHANI D, ALLEN C. How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment[J]. Trends in Microbiology, 2018, 26(11): 929-942. doi: 10.1016/j.tim.2018.06.002
|
[10] |
BRAGARD C, DEHNEN-SCHMUTZ K, DI SERIO F, et al. Pest categorisation of the Ralstonia solanacearum species complex[J]. EFSA Journal, 2019, 17(2): 5618. doi: 10.2903/j.efsa.2019.5618.
|
[11] |
NAKANO M, ICHINOSE Y, MUKAIHARA T. Ralstonia solanacearum type III effector RipAC targets SGT1 to suppress effector-triggered immunity[J]. Plant and Cell Physiology, 2020, 61(12): 2067-2076.
|
[12] |
SUN T, WU W, WU H, et al. Ralstonia solanacearum elicitor RipX induces defense reaction by suppressing the mitochondrial atpA gene in host plant[J]. International Journal of Molecular Sciences, 2020, 21(6): 2000. doi: 10.3390/ijms21062000.
|
[13] |
SCHÖNFELD J, HEUER H, VAN ELSAS J D, et al. Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification of fliC fragments[J]. Applied and Environmental Microbiology, 2003, 69(12): 7248-7256. doi: 10.1128/AEM.69.12.7248-7256.2003
|
[14] |
OPINA N, TAVNER F, HOLLWAY G, et al. A novel method for development of species and strain-specific DNA probes and PCR primers for identifying Burkholderia solanacearum(formerly Pseudomonas solanacearum)[J]. Asia Pacific Journal of Molecular Biology and Biotechnology, 1997, 5(1): 19-30.
|
[15] |
PIRC M, ALIČ Š, DREO T. Rapid loop-mediated isothermal amplification for detection of the Ralstonia solanacearum species complex bacteria in symptomatic potato tubers and plants[J]. Methods in Molecular Biology, 2021, 2354: 401-413.
|
[16] |
KYOSEI Y, YAMURA S, NAMBA M, et al. Antigen tests for COVID-19[J]. Biophysics and Physicobiology, 2021, 18: 28-39. doi: 10.2142/biophysico.bppb-v18.004
|
[17] |
黄雯, 徐进, 张昊, 等. 植物青枯菌LAMP检测方法的建立[J]. 中国农业科学, 2016, 49(11): 2093-2102. doi: 10.3864/j.issn.0578-1752.2016.11.006
|
[18] |
KUBOTA R, VINE B G, ALVAREZ A M, et al. Detection of Ralstonia solanacearum by loop-mediated isothermal amplification[J]. Phytopathology, 2008, 98(9): 1045-1051. doi: 10.1094/PHYTO-98-9-1045
|
[19] |
马学军, 丁雄, 聂凯, 等. 新型等温多自配引发扩增技术(IMSA): CN104388581A[P]. 2015-03-04.
|
[20] |
丁雄. 新型等温核酸扩增技术(IMSA)的建立及其对传染病病原EV71、CVA16、H7N9 和HIV-1的快速检测应用[D]. 广州: 华南理工大学, 2014.
|
[21] |
ZHAI J, YAN Z, PING F, et al. Establishment and application of isothermal amplification techniques for the detection of heat-stable I enterotoxin of enterotoxigenic Escherichia coli[J]. PLoS One, 2020, 15(4): e0230881. doi: 10.1371/journal.pone.0230881
|
[22] |
张梦. 溧阳市肺结核病流行情况及等温多自配引发扩增技术在检测结核分枝杆菌中的应用分析[D]. 苏州: 苏州大学, 2018.
|
[23] |
乐振窍, 许泽仰, 张细玲, 等. FQ-PCR与IMSA检测转基因豆奶外源基因的比较研究[J]. 大豆科学, 2018, 37(6): 943-949.
|
[24] |
王琪, 徐文娟, 石盼盼. IMSA技术快速检测肠出血大肠杆菌O157∶H7方法的建立及应用[J]. 食品工业科技, 2021, 42(17): 263-269.
|
[25] |
杨宏宇. 桑枯萎病病原鉴定及分子生物学研究[D]. 广州: 华南农业大学, 2018.
|
[26] |
DING X, NIE K, SHI L, et al. Improved detection limit in rapid detection of human enterovirus 71 and coxsackievirus A16 by a novel reverse transcription-isothermal multiple-self-matching-initiated amplification assay[J]. Journal of Clinical Microbiology, 2014, 52(6): 1862-1870. doi: 10.1128/JCM.03298-13
|
[27] |
董朝霞, 于翠, 邓文, 等. 桑树青枯病的发生与防治研究进展[J]. 北方蚕业, 2019, 40(4): 1-7. doi: 10.3969/j.issn.1673-9922.2019.04.001
|
[28] |
WANG D, YU J, WANG Y, et al. Development of a real-time loop-mediated isothermal amplification(LAMP) assay and visual LAMP assay for detection of African swine fever virus(ASFV)[J]. Journal of Virological Methods, 2020, 276: 113775. doi: 10.1016/j.jviromet.2019.113775.
|
[29] |
HUANG W E, LIM B, HSU C C, et al. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2[J]. Microbial Biotechnology, 2020, 13(4): 950-961. doi: 10.1111/1751-7915.13586
|
[30] |
TECHATHUVANAN C, DRAUGHON F A, D'SOUZA D H. Loop-mediated isothermal amplification (LAMP) for the rapid and sensitive detection of Salmonella Typhimurium from pork[J]. Journal of Food Science, 2010, 75(3): M165-M172. doi: 10.1111/j.1750-3841.2010.01554.x
|
[31] |
刘吉平, 程伟, 宋小景, 等. 一种家蚕蚕卵微孢子虫的LAMP检测引物及其应用: CN104372082A[P]. 2015-02-25.
|
[32] |
刘吉平, 周轶楠, 孙勋勋. 一组桑花叶病的LAMP检测引物及试剂盒: CN109055616A[P]. 2018-12-21.
|
[33] |
杨宏宇, 周轶楠, 孙勋勋, 等. 桑源阴沟肠杆菌LAMP检测方法的建立和应用[J]. 蚕业科学, 2019, 45(3): 321-330.
|
[34] |
CHEN X, WANG H, LIU C, et al. Technical note: Development of a closed-tube isothermal multiple self-matching-initiated amplification assay for visual detection of Staphylococcus aureus in milk samples[J]. Journal of Dairy Science, 2021, 104(3): 3569-3574. doi: 10.3168/jds.2020-19023
|
[35] |
LIU W, YUAN C, ZHANG L, et al. Establishment and application of isothermal multiple-self-matching-initiated amplification (IMSA) in detecting Type II heat-labile enterotoxin of Escherichia coli[J]. PLoS One, 2019, 14(5): e0216272. doi: 10.1371/journal.pone.0216272
|
[36] |
KUBICEK C, STARR T, GLASS N. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi[J]. Annual Review of Phytopathology, 201, 52: 427-451.
|
[37] |
CHARKOWSKI A O, ALFANO J R, PRESTON G, et al. The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate[J]. Journal of Bacteriology, 1998, 180(19): 5211-5217.
|
[38] |
OKIRO L A, TANCOS M A, NYANJOM S G, et al. Comparative evaluation of LAMP, qPCR, conventional PCR, and ELISA to detect Ralstonia solanacearum in Kenyan potato fields[J]. Plant Disease, 2019, 103(5): 959-965. doi: 10.1094/PDIS-03-18-0489-RE
|
[39] |
李信申, 黄小梅, 吴淑秀, 等. 植物青枯病菌环介导等温扩增快速检测技术研究[J]. 生物技术通报, 2021, 37(1): 272-281.
|
[40] |
GOU H, BIAN Z, CAI R, et al. The colorimetric isothermal multiple-self-matchinginitiated amplification using cresol red for rapid and sensitive detection of porcine circovirus 3[J]. Frontiers in Veterinary Science, 2020, 7: 407. doi: 10.3389/fvets.2020.00407.
|
[41] |
ZHOU Y, YANG H, LIU J. Complete genome sequence of Enterobacter roggenkampii srain KQ-01, isolated from bacterial wilt-resistant mulberry cultivar YS283[J]. Plant Disease, 2021, 105(3): 688-690. doi: 10.1094/PDIS-07-20-1468-A
|
[42] |
王继承. 桑枯萎病中菠萝泛菌的分离鉴定及防治研究[D]. 广州: 华南农业大学, 2018.
|
[43] |
罗龙辉, 王继承, 刘吉平. 桑细菌性枯萎病病原菌的分离鉴定与全基因组序列分析[J]. 植物保护, 2022, 48(1): 44-51.
|