Citation: | WANG Qian, TONG Rui, TAN Genjia, et al. Identification of the pathogen causing Trichosanthes kirilowii fruit rot and screening of fungicides[J]. Journal of South China Agricultural University, 2023, 44(2): 270-279. DOI: 10.7671/j.issn.1001-411X.202202006 |
To clarify the pathogen causing Trichosanthes kirilowii fruit rot and screen effective fungicides for controlling the disease.
Samples of rot fruit from T. kirilowii plants were collected from Dabie Mountain Areas, Anhui Province in 2019—2020. A total of 35 representative isolates were obtained by tissue isolation. The pathogenicity was verified according to the Koch’s postulate, and the causal agents were identified based on the morphological characteristics and multilocus sequence analysis. The indoor toxicity of seven fungicides against the pathogen was detected by the mycelium growth rate method.
Colonies with four different morphological characteristics were isolated and purified. The isolates were confirmed to be pathogenic to the fruit of T. kirilowii according to the Koch’s postulate. They were identified as Fusarium fujikuroi, F. proliferatum, Colletotrichum fructicola and C. liaoningense by combining morphological characteristics with phylogenetic analysis, with isolation frequencies of 31.4%, 8.6%, 20.0% and 40.0%, respectively. In addition, the indoor toxicity test results indicated that prochloraz, fludioxonil, difenoconazole, phenamacril and chlorothalonil had better inhibitory effect against F. fujikuroi andF. proliferatum, with EC50 ranging from 0.1046 to 5.1781 μg/mL. Prochloraz, fludioxonil and difenoconazole had better inhibitory effect againstC. fructiicola and C. liaoningense with EC50 ranging from 0.0097 to 2.1325 μg/mL.
The causal agents associated with fruit rot disease on T. kirilowii are Fusarium spp. and Colletotrichum spp.. Prochloraz, fludioxonil and difenoconazole all show good inhibitory activity against the pathogens.
[1] |
徐劲峰, 檀根甲, 韩翔. 栝楼炭疽病发生危害及综合控制技术研究[J]. 安徽农业科学, 2006(15): 3741-3784. doi: 10.3969/j.issn.0517-6611.2006.15.086
|
[2] |
孙凯, 陈夕军, 沈迎春, 等. 江苏省栝楼烂果病病原鉴定及室内防治药剂筛选[J]. 江苏农业科学, 2020, 48(24): 112-116. doi: 10.15889/j.issn.1002-1302.2020.24.021
|
[3] |
吴朝晖. 安庆市栝楼产业现状及发展对策[J]. 安徽林业科技, 2020, 46(3): 56-58. doi: 10.3969/j.issn.2095-0152.2020.03.017
|
[4] |
韩翔. 瓜蒌炭疽菌的生理生态及病害防治的研究[D]. 合肥: 安徽农业大学, 2004.
|
[5] |
LI H Y, ZHANG Z F. First report of Colletotrichum gloeosporioides causing anthracnose fruit rot of Trichosanthes kirilowii in China[J]. Plant Disease, 2007, 91(5): 636-636.
|
[6] |
ZHANG L X, SONG J H, TAN G J, et al. Characterization of Colletotrichum gloeosporioides responsible for anthracnose disease of Trichosanthes kirilowii Maxim in central China[J]. Phytoparasitica, 2014, 42(4): 549-558. doi: 10.1007/s12600-014-0393-6
|
[7] |
ZHAO W, LI W, CHI Y, et al. Occurrence of stem blight and fruit rot caused by Phytophthora capsici on Chinese cucumber (Trichosanthes kirilowii) in China[J]. Plant Disease, 2020, 105(1): 232.
|
[8] |
方中达. 植病研究方法[M]. 北京: 中国农业出版社, 1998: 122-142.
|
[9] |
张素轩. 镰刀菌属分类进展[J]. 真菌学报, 1991, 10(2): 85-94.
|
[10] |
刘晓云, 景耀, 杨俊秀. 植物炭疽菌研究文献综述[J]. 西北林学院学报, 1995(4): 105-111.
|
[11] |
刘小勇, 田素忠, 秦国夫, 等. 提取植物和微生物DNA的SDS-CTAB改进法[J]. 北京林业大学学报, 1997, 19(3): 100-103. doi: 10.3321/j.issn:1000-1522.1997.03.018
|
[12] |
SCHAAFAMA A W, LIMAY-RIOS V, TAMBURIC-ILLINCIC L. Mycotoxins and Fusarium species associated with maize ear rot in Ontario, Canada[J]. Cereal Research Communications, 2008, 36: 525-527.
|
[13] |
O'DONNELL K, CIGELNIK E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous[J]. Molecular Phylogenetics and Evolution, 1997, 7(1): 103-116. doi: 10.1006/mpev.1996.0376
|
[14] |
WEIR B S, JOHNSTON P R, DAMM U. The Colletotrichum gloeosporioides species complex[J]. Studies in Mycology, 2012, 73(1): 115-180.
|
[15] |
BERBEE M L, PIRSEYEDI M, HUBBARD S. Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences[J]. Mycologia, 1999, 91(6): 964-977. doi: 10.1080/00275514.1999.12061106
|
[16] |
CARBONE I, KOHN L M. A method for designing primer sets for speciation studies in filamentous ascomycetes[J]. Mycologia, 1999, 91(3): 553-556. doi: 10.1080/00275514.1999.12061051
|
[17] |
LIU F, CAI L, CROUS P W, et al. The Colletotrichum gigasporum species complex[J]. Persoonia, 2014, 33(1): 83-97. doi: 10.3767/003158514X684447
|
[18] |
WHITE T J, BRUNS T D, LEE S B, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[M]//INNIS M A, GELFAND D H, SAIMKY J J, et al. PCR Protocols: A guide to methods and applications. New York: Academic Press, 1990: 315-322.
|
[19] |
陈宏州, 杨红福, 姚克兵, 等. 水稻恶苗病病原菌鉴定及室内药剂毒力测定[J]. 植物保护学报, 2018, 45(6): 1356-1366. doi: 10.13802/j.cnki.zwbhxb.2018.2018019
|
[20] |
王晓莉, 李哲, 叶文武, 等. 江苏省13个地区水稻种子携带4种不同恶苗病菌的LAMP检测[J]. 南京农业大学学报, 2020, 43(5): 846-852. doi: 10.7685/jnau.201912029
|
[21] |
王昌亮, 武海燕, 张猛. 河南省一例西瓜果实腐烂病病原鉴定[J]. 植物病理学报, 2011, 41(5): 542-545. doi: 10.13926/j.cnki.apps.2011.05.012
|
[22] |
HE L F, LI X X, GAO Y Y, et al. Characterization and fungicide sensitivity of Colletotrichum spp. from different hosts in Shandong, China[J]. Plant Disease, 2019, 103(1): 34-43. doi: 10.1094/PDIS-04-18-0597-RE
|
[23] |
雷娅红, 况卫刚, 郑春生, 等. 基于DNA条形码技术对镰刀菌属的检测鉴定[J]. 植物保护学报, 2016, 43(4): 544-551. doi: 10.13802/j.cnki.zwbhxb.2016.04.003
|
[24] |
刘威, 叶乃兴, 刘伟, 等. 茶树炭疽菌的鉴定及致病力分析[J]. 福建农林大学学报(自然科学版), 2015, 44(6): 581-586. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2015.06.004
|
[25] |
杨媚, 冯淑杰, 何银银, 等. 柑橘炭疽病高效杀菌剂的筛选及抗药性菌株的发现[J]. 华南农业大学学报, 2013, 34(1): 28-31. doi: 10.7671/j.issn.1001-411X.2013.01.006
|
[26] |
赵金梅, 高贵田, 谷留杰, 等. 中华猕猴桃褐斑病病原鉴定及抑菌药剂筛选[J]. 中国农业科学, 2013, 46(23): 4916-4925. doi: 10.3864/j.issn.0578-1752.2013.23.007
|
[27] |
徐建强, 平忠良, 马世闯, 等. 河南省小麦赤霉病菌对咯菌腈的敏感性[J]. 植物保护学报, 2018, 45(6): 1367-1373.
|
[28] |
霍建飞, 姚玉荣, 郝永娟, 等. 天津市宁河区辣椒炭疽病病原鉴定及防治药剂筛选[J]. 北方园艺, 2020(3): 1-7.
|
[29] |
PATEL J S, GUDMESTAD N C, MEINHARDT S, et al. Pyraclostrobin sensitivity of baseline and fungicide exposed isolates of Pyrenophora tritici-repentis[J]. Crop Protection, 2012, 34: 37-41. doi: 10.1016/j.cropro.2011.10.015
|