LIU Huidan, WAN Xuefen, CUI Jian, et al. Moisture and temperature prediction in tillage layer based on deep reinforcement learning[J]. Journal of South China Agricultural University, 2023, 44(1): 84-92. DOI: 10.7671/j.issn.1001-411X.202201032
    Citation: LIU Huidan, WAN Xuefen, CUI Jian, et al. Moisture and temperature prediction in tillage layer based on deep reinforcement learning[J]. Journal of South China Agricultural University, 2023, 44(1): 84-92. DOI: 10.7671/j.issn.1001-411X.202201032

    Moisture and temperature prediction in tillage layer based on deep reinforcement learning

    More Information
    • Received Date: January 24, 2022
    • Available Online: May 17, 2023
    • Objective 

      To accurately predict the water and temperature of the arable layer using the correlation between soil near surface air temperature and humidity and soil internal parameters, and serve for the realization of fine agricultural planting management.

      Method 

      Aiming at the actual needs of soil tillage layer moisture and temperature prediction in training set acquisition and model verification, an internet of things data acquisition system based on embedded system and narrow band internet of things (NB-IoT) wireless communication technology was designed. A model combination strategy was explored based on the deep Q network (DQN) deep reinforcement learning algorithm. Based on the weighted combination of long short-term memory (LSTM), gated recurrent unit (GRU) and Bi-directional long-short term memory (Bi-LSTM), the DQN-L-G-B combination prediction model was obtained.

      Result 

      The data acquisition system achieved long-term stable and reliable collection of time series environmental data with equal intervals, and provided accurate training set and verification set data for soil moisture, temperature time series prediction based on deep learning. Compared with models such as LSTM, Bi-LSTM, GRU and L-G-B, the DQN-L-G-B combined model not only lowered the root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) in the prediction of moisture and temperature on the tillage layer of the two soil types (loam and sand), but also increased R2 by about 0.1%.

      Conclusion 

      Through the internet of things data acquisition system and the DQN-L-G-B combined model, the accurate prediction of soil moisture and temperature in the cultivated layer based on soil near surface air temperature and humidity can be effectively completed.

    • [1]
      XING L, LI L H, GONG J K, et al. Daily soil temperatures predictions for various climates in United States using data-driven model[J]. Energy, 2018, 160: 430-440. doi: 10.1016/j.energy.2018.07.004
      [2]
      HAO H, YU F H, LI Q L. Soil temperature prediction using convolutional neural network based on ensemble empirical mode decomposition[J]. IEEE Access, 2020, 9: 4084-4096.
      [3]
      杜娟. 关中平原土壤耕作层形成过程研究[D]. 西安: 陕西师范大学, 2014.
      [4]
      付威, 雍晨旭, 马东豪, 等. 黄土丘陵沟壑区治沟造地土壤快速培肥效应[J]. 农业工程学报, 2019, 35(21): 252-261. doi: 10.11975/j.issn.1002-6819.2019.21.031
      [5]
      PRASAD R, DEO R C, LI Y, et al. Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition[J]. Geoderma, 2018, 330: 136-161. doi: 10.1016/j.geoderma.2018.05.035
      [6]
      FU Q, MA Z A, WANG E L, et al. Impact factors and dynamic simulation of tillage-layer temperature in frozen-thawed soil under different cover conditions[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(2): 101-107. doi: 10.25165/j.ijabe.20181102.3068
      [7]
      李宏鹏, 张婉婷, 李颖姣. 气温对浅层地温的影响研究综述[J]. 现代农业研究, 2020, 26(7): 57-58. doi: 10.3969/j.issn.1674-0653.2020.07.026
      [8]
      付强, 马梓奡, 李天霄, 等. 北方高寒区不同覆盖条件下土壤温度差异性分析[J]. 农业机械学报, 2014, 45(12): 152-159. doi: 10.6041/j.issn.1000-1298.2014.12.023
      [9]
      HAN G L, WANG J L, PAN Y Y, et al. Temporal and spatial variation of soil moisture and its possible impact on regional air temperature in China[J]. Water, 2020, 12(6): 1807. doi: 10.3390/w12061807.
      [10]
      薛晓萍, 王新, 张丽娟, 等. 基于支持向量机方法建立土壤湿度预测模型的探讨[J]. 土壤通报, 2007, 38(3): 427-433. doi: 10.3321/j.issn:0564-3945.2007.03.003
      [11]
      WU W, TANG X P, GUO N J, et al. Spatiotemporal modeling of monthly soil temperature using artificial neural networks[J]. Theoretical and Applied Climatology, 2013, 113(3/4): 481-494.
      [12]
      JUNG D H, KIM H S, JHIN C, et al. Time-serial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse[J]. Computers and Electronics in Agriculture, 2020, 173: 105402. doi: 10.1016/j.compag.2020.105402.
      [13]
      柴萌, 王振龙, 陈元芳, 等. 淮北南部区地温变化及其对气温变化的响应[J]. 土壤通报, 2020, 51(3): 568-573. doi: 10.19336/j.cnki.trtb.2020.03.09
      [14]
      LIU Y Q, ZHANG Q, SONG L H, et al. Attention-based recurrent neural networks for accurate short-term and long-term dissolved oxygen prediction[J]. Computers and Electronics in Agriculture, 2019, 165: 104964. doi: 10.1016/j.compag.2019.104964.
      [15]
      MA M, MAO Z. Deep-convolution-based LSTM network for remaining useful life prediction[J]. IEEE Transactions on Industrial Informatics, 2021, 17(3): 1658-1667. doi: 10.1109/TII.2020.2991796
      [16]
      KIM H Y, WON C H. Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models[J]. Expert Systems with Applications, 2018, 103: 25-37. doi: 10.1016/j.eswa.2018.03.002
      [17]
      CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//ACL. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). Doha, Qatar: Association for Computational Linguistics, 2014: 1724-1734.
      [18]
      YU J X, ZHANG X, XU L L, et al. A hybrid CNN-GRU model for predicting soil moisture in maize root zone[J]. Agricultural Water Management, 2021, 245: 106649. doi: 10.1016/j.agwat.2020.106649.
      [19]
      HE Y L, CHEN L, GAO Y, et al. Novel double-layer bidirectional LSTM network with improved attention mechanism for predicting energy consumption[J]. ISA Transactions, 2022, 127: 350-360. doi: 10.1016/j.isatra.2021.08.030
      [20]
      YIN J, DENG Z, INES A V M, et al. Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)[J]. Agricultural Water Management, 2020, 242: 106386. doi: 10.1016/j.agwat.2020.106386.
      [21]
      周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 371-372.
      [22]
      SUTTON R S, BARTO A G. Reinforcement learning: An introduction[J]. IEEE Transactions on Neural Networks, 1998, 9(5): 1054. doi: 10.1109/TNN.1998.712192.
      [23]
      WU J D, HE H W, PENG J K, et al. Continuous reinforcement learning of energy management with deep Q network for a power split hybrid electric bus[J]. Applied Energy, 2018, 222: 799-811. doi: 10.1016/j.apenergy.2018.03.104
      [24]
      ZHU J, SONG Y, JIANG D, et al. A new deep-Q-learning-based transmission scheduling mechanism for the cognitive internet of things[J]. IEEE Internet of Things Journal, 2018, 5(4): 2375-2385.
      [25]
      MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. doi: 10.1038/nature14236
      [26]
      CARTA S, FERREIRA A, PODDA A S, et al. Multi-DQN: An ensemble of deep Q-learning agents for stock market forecasting[J]. Expert Systems with Applications, 2021, 164: 113820. doi: 10.1016/j.eswa.2020.113820.
    • Related Articles

      [1]CHEN Wei, YUAN Wenjing, GUAN Xue, HU Qiongbo. Biodiversity of Isaria in soil and its activity against Phyllotreta striolata[J]. Journal of South China Agricultural University, 2021, 42(4): 75-82. DOI: 10.7671/j.issn.1001-411X.202012012
      [2]ZHAO Hui, XU Di. Antifeedant activities of podophyllotoxin and 4′-demethylpodophyotoxin against the adult of striped flea beetles,Phyllotreta striolata[J]. Journal of South China Agricultural University, 2014, 35(4): 67-70. DOI: 10.7671/j.issn.1001-411X.2014.04.013
      [3]HE Hua-liang, BIN Shu-ying, LIAO Hong-zhi, WU Zhong-zhen, LIN Jin-tian. Sequencing and Expression Profile of the Gene Encoding Lipoate Protein Ligase in Phyllotreta striolata[J]. Journal of South China Agricultural University, 2012, 33(3): 351-355. DOI: 10.7671/j.issn.1001-411X.2012.03.016
      [4]SONG Yan-xia, DONG Yi-zhi, ZHANG Mao-xin. Studies on the Influence of Phyllotreta striolata on the Value Loss of Brassica campestrist and the Economic Thresholds[J]. Journal of South China Agricultural University, 2011, 32(1): 53-56. DOI: 10.7671/j.issn.1001-411X.2011.01.012
      [5]ZHANG Mao-xin,LING Ring,LIANG Guang-wen. Effects of host plants on the fitness and the population dynamics of Phyllotreta stiolata[J]. Journal of South China Agricultural University, 2004, 25(3): 64-66. DOI: 10.7671/j.issn.1001-411X.2004.03.018
      [6]The Influence of Non-Host Plant Volatiles on Olfactory, Feeding and Oviposition Behavior of Phyllotreta striolata Fabricius[J]. Journal of South China Agricultural University, 2003, 24(2): 38-40. DOI: 10.7671/j.issn.1001-411X.2003.02.011
      [7]ZHANG Mao-xin,LIANG Guang-wen. The Influence of Host Plants on the Experimental Population of Striped Flea Beetle [Phyllotreta striolata (F.)][J]. Journal of South China Agricultural University, 2000, (3): 25-28. DOI: 10.7671/j.issn.1001-411X.2000.03.007
      [8]HOU You-ming,PANG Xiong-fei,LIANG Guang-wen,SHEN Shu-ping. Study on the Control Effect of the Soil Treatment on the Population of Striped Flea Beetle [Plyllotreta striolata (F.)][J]. Journal of South China Agricultural University, 2000, (3): 21-24. DOI: 10.7671/j.issn.1001-411X.2000.03.006
      [9]ZHANG Mao-xin,LIANG Guang-wen,PANG Xiong-fei. The Construction and Analysis of Natural Population Life Table of Phyllotreta striolata (Fabricius)(Cleoptera: Chrysomelidea)[J]. Journal of South China Agricultural University, 2000, (2): 21-24. DOI: 10.7671/j.issn.1001-411X.2000.02.007
      [10]Wei Hongyi Wang Guohan Pang Xiongfei. INFECTIVITY OF THE NEMATODE, Steinernema jeltiae, TO THE STRIPED FLEA BEETLE, Phyllotreta striolata[J]. Journal of South China Agricultural University, 1992, (1): 26-29.
    • Cited by

      Periodical cited type(10)

      1. 何玉,周晨莉,张恒嘉. 水氮互作对土壤有机碳、微生物及酶活性的影响研究述评. 水利规划与设计. 2025(03): 97-100+106 .
      2. 秦钧,骆洪义,贾国燏,褚旭,宋久洋,胡华林. 聚乙烯微塑料对土壤的影响及综合生物标志物响应指数. 山东化工. 2025(03): 12-18 .
      3. 赵俊波,胡兵辉. 水肥调控对茶树土壤酶及土壤养分的影响. 山西农业大学学报(自然科学版). 2024(02): 130-140 .
      4. 梁榕,何娇,孙飞虎,张瑞芳,王鑫鑫. 聚乙烯微塑料对土壤养分和酶活性的影响. 环境科学. 2024(06): 3679-3687 .
      5. 王颜玉,王文定,郑梦瑶,欧行奇,郑会芳. 施氮和灌溉处理对麦田土壤有机碳组分及酶活性的影响. 环境工程技术学报. 2024(05): 1419-1426 .
      6. 朱琪,史中兴,寇燕燕,刘斌,陈亮,栾倩倩. 原位工程化根治技术和增施生物有机肥对盐碱地土壤酶活性及甜瓜产量、品质的影响. 中国瓜菜. 2023(03): 77-84 .
      7. 赵朔. 水肥一体化模式对马铃薯干物质积累及水分利用效率的影响. 基层农技推广. 2023(05): 34-37 .
      8. 郝海波,许文霞,侯振安. 水氮耦合对滴灌棉田土壤有机碳组分及酶活性的影响. 植物营养与肥料学报. 2023(05): 860-875 .
      9. 吕江艳,龙鹏宇,罗维钢,李伏生,农梦玲. 甘蔗节水高产和蔗田氧化亚氮减排的滴灌施肥模式. 节水灌溉. 2023(12): 1-8 .
      10. 关追追,卢奇锋,陈动,邱权,苏艳,李吉跃,何茜. 施肥方式对幼龄楸树非结构性碳器官分配和生长季动态的影响. 西北植物学报. 2022(08): 1355-1362 .

      Other cited types(9)

    Catalog

      Article views (170) PDF downloads (432) Cited by(19)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return