Citation: | HUO Mengfei, MENG Fanming, WANG Sutian, et al. Construction and functional validation of CRISPR/Cas9 vector targeting pig Y chromosome cutting[J]. Journal of South China Agricultural University, 2023, 44(2): 187-196. DOI: 10.7671/j.issn.1001-411X.202201022 |
To knock out the target chromosome by CRISPR/Cas9 system to cut multiple sites of Y chromosome, and provide a new method for sex control of livestock and poultry.
Based on CRISPR/Cas9 technology, we searched for multiple copies of repeat sequences on Y chromosome that can be specifically recognized by sgRNA, and verified their effectiveness on target by in vitro cleavage, quantitative analysis and karyotype identification.
The designed sgRNA could cut the target fragment obviously in vitro, and the cutting efficiency was more than 50%. The results of quantitative analysis of genes further proved the effectiveness of gene cutting at the cell level, and the cutting effect of clustered repeats was significantly better than that of scattered repeats. Karyotype identification also confirmed the loss of pig Y chromosome at the cellular level.
The research results lay a foundation for the subsequent construction of chromosome knockout pigs and the realization of sex control in pigs.
[1] |
O’DOHERTY A, RUF S, MULLIGAN C, et al. An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes[J]. Science, 2005, 309(5743): 2033-2037. doi: 10.1126/science.1114535
|
[2] |
XIAO A, WANG Z, HU Y, et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish[J]. Nucleic Acids Research, 2013, 41(14): e141. doi: 10.1093/nar/gkt464.
|
[3] |
LI L B, CHANG K, WANG P, et al. Trisomy correction in Down syndrome induced pluripotent stem cells[J]. Cell Stem Cell, 2012, 11(5): 615-619. doi: 10.1016/j.stem.2012.08.004
|
[4] |
ABRAM C L, ROBERGE G L, HU Y, et al. Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice[J]. Journal of Immunological Methods, 2014, 408: 89-100. doi: 10.1016/j.jim.2014.05.009
|
[5] |
TADA M, MATSUMURA H, KUROSE Y, et al. Target chromosomes of inducible deletion by a Cre/inverted loxP system in mouse embryonic stem cells[J]. Chromosome Research, 2009, 17(4): 443-450. doi: 10.1007/s10577-009-9035-0
|
[6] |
CHIANG J C, JIANG J, NEWBURGER P E, et al. Trisomy silencing by XIST normalizes Down syndrome cell pathogenesis demonstrated for hematopoietic defects in vitro[J]. Nature Communications, 2018, 9: 5180. doi: 10.1038/s41467-018-07630-y
|
[7] |
JIANG J, JING Y, COST G J, et al. Translating dosage compensation to trisomy 21[J]. Nature, 2013, 500(7462): 296-300. doi: 10.1038/nature12394
|
[8] |
SANTIAGO Y, CHAN E, LIU P Q, et al. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(15): 5809-5814. doi: 10.1073/pnas.0800940105
|
[9] |
KIM H, KIM J. A guide to genome engineering with programmable nucleases[J]. Nature Reviews Genetics, 2014, 15(5): 321-334. doi: 10.1038/nrg3686
|
[10] |
SPITZ F, HERKENNE C, MORRIS M A, et al. Inversion-induced disruption of the Hoxd cluster leads to the partition of regulatory landscapes[J]. Nature Genetics, 2005, 37(8): 889-893. doi: 10.1038/ng1597
|
[11] |
LOONSTRA A, VOOIJS M, BEVERLOO H B, et al. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(16): 9209-9214. doi: 10.1073/pnas.161269798
|
[12] |
GARNEAU J E, DUPUIS M, VILLION M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature, 2010, 468(7320): 67-71. doi: 10.1038/nature09523
|
[13] |
DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 2011, 471(7340): 602-607. doi: 10.1038/nature09886
|
[14] |
YOSHIMI K, KUNIHIRO Y, KANEKO T, et al. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes[J]. Nature Communications, 2016, 7: 10431. doi: 10.1038/ncomms10431
|
[15] |
ZHENG Q, CAI X, TAN M H, et al. Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells[J]. BioTechniques, 2014, 57(3): 115-124. doi: 10.2144/000114196
|
[16] |
GILBERT L A, HORLBECK M A, ADAMSON B, et al. Genome-scale CRISPR-mediated control of gene repression and activation[J]. Cell, 2014, 159(3): 647-661. doi: 10.1016/j.cell.2014.09.029
|
[17] |
方锐, 畅飞, 孙照霖, 等. CRISPR/Cas9介导的基因组定点编辑技术[J]. 生物化学与生物物理进展, 2013, 40(8): 691-702.
|
[18] |
BURMA S, CHEN B P C, CHEN D J. Role of non-homologous end joining (NHEJ) in maintaining genomic integrity[J]. DNA Repair, 2006, 5(9/10): 1042-1048.
|
[19] |
HARTLERODE A J, SCULLY R. Mechanisms of double-strand break repair in somatic mammalian cells[J]. The Biochemical Journal, 2009, 423(2): 157-168. doi: 10.1042/BJ20090942
|
[20] |
GASIUNAS G, BARRANGOU R, HORVATH P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): E2579-E2586.
|
[21] |
JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. doi: 10.1126/science.1225829
|
[22] |
ZUO E, HUO X, YAO X, et al. CRISPR/Cas9-mediated targeted chromosome elimination[J]. Genome Biology, 2017, 18(1): 224. doi: 10.1186/s13059-017-1354-4.
|
[23] |
ADIKUSUMA F, WILLIAMS N, GRUTZNER F, et al. Targeted deletion of an entire chromosome using CRISPR/Cas9[J]. Molecular Therapy, 2017, 25(8): 1736-1738. doi: 10.1016/j.ymthe.2017.05.021
|
[24] |
FU Y, FODEN J A, KHAYTER C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nature Biotechnology, 2013, 31(9): 822-826. doi: 10.1038/nbt.2623
|
[25] |
ADIKUSUMA F, PILTZ S, CORBETT M A, et al. Large deletions induced by Cas9 cleavage[J]. Nature, 2018, 560(7717): E8-E9. doi: 10.1038/s41586-018-0380-z
|
[26] |
CULLOT G, BOUTIN J, TOUTAIN J, et al. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations[J]. Nature Communications, 2019, 10: 1136. doi: 10.1038/s41467-019-09006-2
|
[27] |
LAPINAITE A, KNOTT G J, PALUMBO C M, et al. DNA capture by a CRISPR-Cas9-guided adenine base editor[J]. Science, 2020, 369(6503): 566-571. doi: 10.1126/science.abb1390
|
[28] |
YANG L, GÜELL M, NIU D, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs)[J]. Science, 2015, 350(6264): 1101-1104. doi: 10.1126/science.aad1191
|
[1] | WANG Yunchao, ZHAI Huabo, GONG Jinliang, ZHANG Yanfei. Effect of magnetic field on surface tension and droplet size of metolachlor herbicide solution[J]. Journal of South China Agricultural University, 2023, 44(2): 324-332. DOI: 10.7671/j.issn.1001-411X.202202020 |
[2] | ZHANG Long, SONG Shuran, SUN Daozong, XUE Xiuyun, DAI Qiufang, LI Zhen. Response of droplet diameter of agricultural spray nozzle to liquid viscosity[J]. Journal of South China Agricultural University, 2021, 42(2): 102-109. DOI: 10.7671/j.issn.1001-411X.202006012 |
[3] | CHEN Yin, QI Haoliang, ZHANG Long, MA Jinlong, JIN Shangjie, LI Guangze, LAN Yubin. Effects of different adjuvants and nozzles on droplet distribution and drift when applied with UAV[J]. Journal of South China Agricultural University, 2020, 41(6): 50-58. DOI: 10.7671/j.issn.1001-411X.202007037 |
[4] | HUANG Xiaoyu, LAN Yubin, YIN Xuanchun. Design and test of an agricultural variable nozzle based on magnetorheological fluid[J]. Journal of South China Agricultural University, 2019, 40(4): 92-99. DOI: 10.7671/j.issn.1001-411X.201809038 |
[5] | CHEN Shengde, LAN Yubin, ZHOU Zhiyan, LIAO Juan, ZHU Qiuyang. Effects of spraying parameters of small plant protection UAV on droplets deposition distribution in citrus canopy[J]. Journal of South China Agricultural University, 2017, 38(5): 97-102. DOI: 10.7671/j.issn.1001-411X.2017.05.017 |
[6] | ZOU Yi, HAO Xiangze, HE Ruiyin. Numerical simulation and experiment of air distribution seed-metering device based on coupled EDEM-Fluent[J]. Journal of South China Agricultural University, 2017, 38(4): 110-116. DOI: 10.7671/j.issn.1001-411X.2017.04.018 |
[7] | LAN Yubin, PENG Jin, JIN Ji. Research status and development of pesticide spraying droplet size[J]. Journal of South China Agricultural University, 2016, 37(6): 1-9. DOI: 10.7671/j.issn.1001-411X.2016.06.001 |
[8] | LIU Tao, HE Ruiyin, LU Jing, ZOU Yi, ZHAO Mingming. Simulation and verification on seeding performance of nest hole wheel seed-metering device based on EDEM[J]. Journal of South China Agricultural University, 2016, 37(3): 126-132. DOI: 10.7671/j.issn.1001-411X.2016.03.020 |
[9] | C. SINFORT,B. TISSEYRE,SONG Shu-ran,HONG Tian-sheng,WANG Wei-xing,ZHAO Xin,C. SINFORT,B. TISSEYRE. The Deposit Distribution of Spraying Droplet Based on DGPS in Rice Fields[J]. Journal of South China Agricultural University, 2006, 27(3): 97-99. DOI: 10.7671/j.issn.1001-411X.2006.03.027 |
[10] | Zhou Hengxi. Computer Simulation of Bending Test on Reinforced Concrete Beam[J]. Journal of South China Agricultural University, 1999, (4): 116-119. |