Citation: | ZHANG Xuejun, ZHANG Haitao, SHI Zenglu, et al. Design and experiment of real-time monitoring system for cotton sowing quality[J]. Journal of South China Agricultural University, 2023, 44(2): 304-313. DOI: 10.7671/j.issn.1001-411X.202201004 |
There are problems of missed seeding and reseeding during the operation of cotton hole sowing machine used in Xinjiang region, which the driver could not find in time. A real-time monitoring system for cotton sowing quality was designed to solve these problems.
The monitoring system uses the STM32F103C8T6 microcontroller hardware system as the lower computer, obtains the information of missed seeding and reseeding of cotton seeds through the counter-light photoelectric sensor and photoelectric encoder installed on the seed storage ring of the hole sower, and determines the quality of cotton sowing. The cotton sowing information is transmitted to the human-machine interface of the DWIN touch screen through the nRF24L01 module for real-time display. A test bed of cotton sowing quality monitoring system was built to verify the accuracy of the monitoring system through field tests.
The results of the bench test showed that the system had the highest monitoring accuracies of 96.65%, 94.59% and 92.00% respectively for qualified seeding, missed seeding and reseeding when the speed of the hole sower was 30 r/min. When the speed of the hole sower was higher than 30 r/min, the monitoring accuracy decreased obviously. The results of field trial validation showed that the average monitoring accuracies of the system were 94.51%, 92.38% and 86.55% respectively for qualified seeding, missed seeding and reseeding. The analysis of the field trial data using SPSS software concluded that the trial data were statistically significant, and the cotton sowing quality data obtained by the monitoring system had a high correlation with the manually measured data, and the actual values could be reflected by the system monitoring values.
The system meets the demand for monitoring the quality of cotton sowing in field operation, and is of great significance for realizing the improvement of quality and efficiency of cotton planting.
[1] |
贾小凡. 国家棉花市场监测系统报告[R]. 北京: 中储棉花信息中心有限公司, 2020.
|
[2] |
闫建峰. 新疆维吾尔自治区棉花生产现状及发展对策[J]. 乡村科技, 2020, 11(22): 47-48. doi: 10.3969/j.issn.1674-7909.2020.22.023
|
[3] |
曹叶, 王旭峰, 王龙, 等. 精量穴播器排种性能检测方法研究分析及展望[J]. 新疆农机化, 2020(6): 19-24.
|
[4] |
戈天剑, 赵斌, 衣淑娟, 等. 气吸式玉米播种机排种监测系统研究[J]. 农机化研究, 2017, 39(8): 82-85. doi: 10.3969/j.issn.1003-188X.2017.08.017
|
[5] |
丁幼春, 王凯阳, 刘晓东, 等. 中小粒径种子播种检测技术研究进展[J]. 农业工程学报, 2021, 37(8): 30-41. doi: 10.11975/j.issn.1002-6819.2021.08.004
|
[6] |
林相峰, 邹林, 叶明宇. 约翰迪尔1820型气力式免耕变量播种机[J]. 现代化农业, 2005(8): 26. doi: 10.3969/j.issn.1001-0254.2005.08.034
|
[7] |
Precision Planting. WaveVision[EB/OL]. (2014-07-15) [2019-08-22]. https://www.precisionplanting.com/products/product/wavevision.
|
[8] |
BORJA A A, AMONGO R M C, SUMINISTRADO D C, et al. A machine vision assisted mechatronic seed meter for precision planting of corn[C]// IEEE. 2018 3rd International Conference on Control and Robotics Engineering (ICCRE). Nagoya: IEEE, 2018: 183-187
|
[9] |
MARRION C C, FOSTER N J, LIU L, et al. System and method for three-dimensional alignment of objects using machine vision: US8442304B2[P/OL]. [2022-01-03]. https://www.researchgate.net/publication/302633414_System_and_method_for_three-dimensional_alignment_of_objects_using_machine_vision.
|
[10] |
丁幼春, 王雪玲, 廖庆喜. 基于时变窗口的油菜精量排种器漏播实时检测方法[J]. 农业工程学报, 2014, 30(24): 11-21. doi: 10.3969/j.issn.1002-6819.2014.24.002
|
[11] |
丁幼春, 朱凯, 王凯阳, 等. 薄面激光−硅光电池中小粒径种子流监测装置研制[J]. 农业工程学报, 2019, 35(8): 12-20. doi: 10.11975/j.issn.1002-6819.2019.08.002
|
[12] |
李明, 刘晓辉, 丁幼春, 等. 基于排种频率的油菜气力式精量排种器漏播检测技术与装置[C]// 中国农业工程学会. 中国农业工程学会2011年学术年会论文集. 重庆: 中国农业工程学会, 2011: 299-304.
|
[13] |
谭穗妍, 马旭, 董文浩, 等. 基于嵌入式机器视觉的水稻秧盘育秧图像无线传输系统[J]. 农业机械学报, 2017, 48(4): 22-28. doi: 10.6041/j.issn.1000-1298.2017.04.002
|
[14] |
谭穗妍, 马旭, 吴露露, 等. 基于机器视觉和BP神经网络的超级杂交稻穴播量检测[J]. 农业工程学报, 2014, 30(21): 201-208. doi: 10.3969/j.issn.1002-6819.2014.21.024
|
[15] |
杨硕, 王秀, 高原源, 等. 玉米精密播种粒距在线监测与漏播预警系统设计[J]. 农业机械学报, 2021, 52(3): 17-24. doi: 10.6041/j.issn.1000-1298.2021.03.002
|
[16] |
黄东岩, 朱龙图, 贾洪雷, 等. 基于GPS和GPRS的远程玉米排种质量监测系统[J]. 农业工程学报, 2016, 32(6): 162-168. doi: 10.11975/j.issn.1002-6819.2016.06.022
|
[17] |
王金武, 张曌, 王菲, 等. 基于压电冲击法的水稻穴直播监测系统设计与试验[J]. 农业机械学报, 2019, 50(6): 74-84. doi: 10.6041/j.issn.1000-1298.2019.06.008
|
[18] |
姚建真. 迪文DGUS与Modbus协议的基本应用[J]. 电子技术应用, 2013, 39(1): 2. doi: 10.3969/j.issn.0258-7998.2013.01.002
|
[19] |
中国国家标准化管理委员会. 单粒(精密)播种机试验方法: GB/T 6973—2005[S]. 北京: 中国农业出版社, 2005.
|
[20] |
董万城, 张立新, 李文春, 等. 新疆棉花播种机械应用现状及发展趋势[J]. 新疆农机化, 2021(2): 11-15.
|
[21] |
中国国家标准化管理委员会. 铺膜穴播机作业质量: NY/T 987— 2006[S]. 北京: 中国农业出版社, 2006.
|
1. |
安志装,索琳娜,刘宝存. 我国农业面源污染研究与展望. 植物营养与肥料学报. 2024(07): 1422-1436 .
![]() |