Citation: | CHEN Xueshen, FANG Gendu, XIONG Yuesong, et al. Design and test of row-follow control system based on visual perception of lateral-offset of weeding component in paddy field[J]. Journal of South China Agricultural University, 2022, 43(5): 83-91. DOI: 10.7671/j.issn.1001-411X.202112049 |
In order to avoid seedling and reduce seedling damage rate during the operation of mechanical weeding, a control system of avoiding seedling based on machine vision and proportion integration differentiation (PID) control technology was designed.
The improved extra-green algorithm was used to gray rice seedlings. The image projection method was used to extract the characteristics of rice seedlings within the region of interest (ROI) to obtain the corresponding image coordinates. The robust regression algorithm was used to fit rice seedlings to obtain the center line of seedling belt. The ground coordinate position of seedling, and the distance between the center of weeding unit and the center line of seedling belt were obtained by transforming the model of aperture imaging. The hydraulic rectifying system was controlled based on PID control algorithm, and the Simulink in Matlab software was used for the simulation analysis of the system.
The seedling avoidance was realized, and the steady-state response time of the system model was 0.34 s. The performance comparison tests of the control system with and without the control system of avoiding seedlings showed that the control system of avoiding seedlings could obviously reduce the seedling damage of weeding components, with the average seedling injury rate of 3.75%, and the rate without the control system of avoiding seedlings was 24.88%.
The row-follow control system for mechanical weeding designed in this study can correct the working path of the weeding components in real time, which effectively reduces the seedling injury rate of mechanical weeding. The results of this study can provide some reference for mechanical weeding row-follow control of rice and other crops.
[1] |
伍同, 曾山, 赵润茂, 等. 智能化作物株间机械除草技术分析与研究[J]. 农机化研究, 2019, 41(6): 1-6. doi: 10.3969/j.issn.1003-188X.2019.06.001
|
[2] |
罗锡文, 廖娟, 胡炼, 等. 我国智能农机的研究进展与无人农场的实践[J]. 华南农业大学学报, 2021, 42(6): 8-17. doi: 10.7671/j.issn.1001-411X.202108040
|
[3] |
夏新, 张广才, 鲍康阜, 等. 水直播稻田化学除草试验[J]. 现代农业科技, 2021(12): 118-121. doi: 10.3969/j.issn.1007-5739.2021.12.047
|
[4] |
李春胜, 谭宏杰, 李娜, 等. 水稻田间除草现状分析及未来发展趋势的思考[J]. 农业与技术, 2021, 41(24): 10-12.
|
[5] |
齐龙, 赵柳霖, 马旭, 等. 3GY-1920型宽幅水田中耕除草机的设计与试验[J]. 农业工程学报, 2017, 33(8): 47-55.
|
[6] |
邓小静. 农用无人机植保的应用及发展[J]. 南方农机, 2021, 52(2): 61-62. doi: 10.3969/j.issn.1672-3872.2021.02.031
|
[7] |
蒋郁, 齐龙, 龚浩, 等. 气动式水稻株间机械除草装置研制[J]. 华南农业大学学报, 2020, 41(6): 37-49. doi: 10.7671/j.issn.1001-411X.202006015
|
[8] |
张俊雄, 王凯, 张良, 等. 横移对行控制系统设计与试验分析[J]. 江苏大学学报(自然科学版), 2017, 38(4): 423-427.
|
[9] |
ÅSTRAND B, BAERVELDT A J. An agricultural mobile robot with vision-based perception for mechanical weed control[J]. Autonomous Robots, 2002, 13(1): 21-35. doi: 10.1023/A:1015674004201
|
[10] |
ÅSTRAND B, BAERVELDT A J. A vision based row-following system for agricultural field machinery[J]. Mechatronics, 2005, 15(2): 251-269. doi: 10.1016/j.mechatronics.2004.05.005
|
[11] |
陈娇, 姜国权, 杜尚丰, 等. 基于垄线平行特征的视觉导航多垄线识别[J]. 农业工程学报, 2009, 25(12): 107-113. doi: 10.3969/j.issn.1002-6819.2009.12.019
|
[12] |
孟庆宽, 何洁, 仇瑞承, 等. 基于机器视觉的自然环境下作物行识别与导航线提取[J]. 光学学报, 2014, 34(7): 180-186.
|
[13] |
孟庆宽. 基于机器视觉的农业车辆—农具组合导航系统路径识别及控制方法研究[D]. 北京: 中国农业大学, 2014.
|
[14] |
李军锋, 李逃昌, 彭继慎. 农业机器人视觉导航路径识别方法研究[J]. 计算机工程, 2018, 44(9): 38-44.
|
[15] |
司永胜, 姜国权, 刘刚, 等. 基于最小二乘法的早期作物行中心线检测方法[J]. 农业机械学报, 2010, 41(7): 163-167. doi: 10.3969/j.issn.1000-1298.2010.07.034
|
[16] |
郭祥雨, 薛新宇. 基于机器视觉的水稻制种田导航线提取方法[J]. 中国农机化学报, 2021, 42(5): 197-201.
|
[17] |
贾洪雷, 李森森, 王刚, 等. 中耕期玉米田间避苗除草装置设计与试验[J]. 农业工程学报, 2018, 34(7): 15-22. doi: 10.11975/j.issn.1002-6819.2018.07.002
|
[18] |
齐龙, 刘闯, 蒋郁. 水稻机械除草技术装备研究现状及智能化发展趋势[J]. 华南农业大学学报, 2020, 41(6): 29-36. doi: 10.7671/j.issn.1001-411X.202008043
|
[19] |
韩豹, 杨亚楠, 王宏伟, 等. 苗间除草部件入土深度PID自动控制系统设计与台架试验[J]. 农业工程学报, 2018, 34(11): 68-77. doi: 10.11975/j.issn.1002-6819.2018.11.009
|
[20] |
陈勇, 田磊, 郑加强. 基于直接施药方法的除草机器人[J]. 农业机械学报, 2005, 36(10): 91-93.
|
[21] |
郭伟斌, 陈勇, 侯学贵, 等. 除草机器人机械臂的逆向求解与控制[J]. 农业工程学报, 2009, 25(4): 108-112.
|
[22] |
胡炼, 罗锡文, 严乙桉, 等. 基于爪齿余摆运动的株间机械除草装置研制与试验[J]. 农业工程学报, 2012, 28(14): 10-16. doi: 10.3969/j.issn.1002-6819.2012.14.002
|
[23] |
胡炼, 罗锡文, 曾山, 等. 基于机器视觉的株间机械除草装置的作物识别与定位方法[J]. 农业工程学报, 2013, 29(10): 12-18.
|
[24] |
杨洋, 张博立, 查家翼, 等. 玉米行间导航线实时提取[J]. 农业工程学报, 2020, 36(12): 162-171. doi: 10.11975/j.issn.1002-6819.2020.12.020
|
[25] |
HAGUE T, TILLETT N D. A bandpass filter-based approach to crop row location and tracking[J]. Mechatronics, 2001, 11(1): 1-12. doi: 10.1016/S0957-4158(00)00003-9
|
[26] |
蒋郁, 崔宏伟, 区颖刚, 等. 基于茎基部分区边缘拟合的稻株定位方法[J]. 农业机械学报, 2017, 48(6): 23-31.
|