• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
SUN Ke, ZHANG Yanfei, GONG Jinliang. Multi-sensor data fusion and navigation line extraction method based on discrete factor[J]. Journal of South China Agricultural University, 2022, 43(5): 92-98. DOI: 10.7671/j.issn.1001-411X.202112029
Citation: SUN Ke, ZHANG Yanfei, GONG Jinliang. Multi-sensor data fusion and navigation line extraction method based on discrete factor[J]. Journal of South China Agricultural University, 2022, 43(5): 92-98. DOI: 10.7671/j.issn.1001-411X.202112029

Multi-sensor data fusion and navigation line extraction method based on discrete factor

More Information
  • Received Date: December 16, 2021
  • Available Online: May 17, 2023
  • Objective 

    In view of the fuzzy and irregular shape of the path boundary in the corn field, the common field navigation line extraction algorithm will have the problem of excessive deviation in practical application of agricultural robot. In this paper, a navigation line extraction algorithm based on discrete factor fusion of camera and 3D LiDAR is proposed for the field of corn at 3rd−5th leaf stage.

    Method 

    First, three-dimensional lidar was used to obtain corn plant point cloud data. At the same time, the green feature binary images were obtained from the images taken by the camera using the super-green algorithm and the maximum between-cluster variance method, and then the point cloud data after cluster analysis were projected onto the target bounding box in the image. A multi-sensor data fusion support model was constructed for feature recognition. Finally the acquired feature center point was fitted as the navigation baseline.

    Result 

    The algorithm could adapt well to complex environments and had strong anti-interference ability. The average processing time of a single frame was only 95.62 ms, and the accuracy rate was as high as 95.33%.

    Conclusion 

    The algorithm solves the problems of shifting in finding feature centroid and unreliable recognition results in traditional algorithms, and provides a reliable and real-time navigation path for the robot to walk in corn field.

  • [1]
    YANG K, ZHANG Z, CHENG H, et al. Domain centralization and cross-modal reinforcement learning for vision-based robotic manipulation[J]. International Journal of Precision Agricultural Aviation, 2018, 1(1): 48-55. doi: 10.33440/j.ijpaa.20200302.77
    [2]
    张琳洁, 张文爱, 韩应征, 等. 农业机械导航关键技术发展分析[J]. 农机化研究, 2016, 38(6): 10-15. doi: 10.3969/j.issn.1003-188X.2016.06.002
    [3]
    SØGAARD H T, OLSEN H J. Determination of crop rows by image analysis without segmentation[J]. Computers and Electronics in Agriculture, 2003, 38(2): 141-158. doi: 10.1016/S0168-1699(02)00140-0
    [4]
    常昕, 陈晓冬, 张佳琛, 等. 基于激光雷达和相机信息融合的目标检测及跟踪[J]. 光电工程, 2019, 46(7): 91-101.
    [5]
    胡丹丹, 殷欢. 基于机器视觉的玉米收获机器人路径识别[J]. 农机化研究, 2017, 39(12): 190-194.
    [6]
    MARCHANT J A, BRIVOT R. Real-time tracking of plant rows using a hough transform[J]. Real-Time Imaging, 1995, 1(5): 363-371. doi: 10.1006/rtim.1995.1036
    [7]
    梁习卉子, 陈兵旗, 姜秋慧, 等. 基于图像处理的玉米收割机导航路线检测方法[J]. 农业工程学报, 2016, 32(22): 43-49. doi: 10.11975/j.issn.1002-6819.2016.22.006
    [8]
    俞毓锋, 赵卉菁. 基于相机与摇摆激光雷达融合的非结构化环境定位[J]. 自动化学报, 2019, 45(9): 1791-1798.
    [9]
    宋宇, 刘永博, 刘路, 等. 基于机器视觉的玉米根茎导航基准线提取方法[J]. 农业机械学报, 2017, 48(2): 38-44. doi: 10.6041/j.issn.1000-1298.2017.02.005
    [10]
    冯娟, 刘刚, 司永胜, 等. 果园视觉导航基准线生成算法[J]. 农业机械学报, 2012, 43(7): 185-189. doi: 10.6041/j.issn.1000-1298.2012.07.034
    [11]
    WOEBBECKE D M. MEYER G E, BARGEN K V, et a1. Color indices for weed identification under various soil, residue, and lighting conditions[J]. Transactions of the ASAE, 1995, 38(1): 259-269. doi: 10.13031/2013.27838
    [12]
    KASHYAP Y, KHARE A, LIPTON M. An improved SOBEL algorithm for palm image edge detection using OTSU method[J]. Biometrics and Bioinformatics, 2012, 4(7): 312-317.
    [13]
    YANG H, ZHAO J, LAN Y, et al. Fraction vegetation cover extraction of winter wheat based on RGB image obtained by UAV[J]. International Journal of Precision Agricultural Aviation, 2018, 1(1): 54-61.
    [14]
    范九伦, 赵凤. 灰度图像的二维Otsu曲线阈值分割法[J]. 电子学报, 2007, 35(4): 751-755. doi: 10.3321/j.issn:0372-2112.2007.04.029
    [15]
    DENG X L, THOMASSON A J, PUGH A N, et al. Estimating the severity of sugarcane aphids infestation on sorghum with machine vision[J]. International Journal of Precision Agricultural Aviation, 2018, 1(1): 89-96. doi: 10.33440/j.ijpaa.20200302.89
    [16]
    赵高长, 张磊, 武风波. 改进的中值滤波算法在图像去噪中的应用[J]. 应用光学, 2011, 32(4): 678-682. doi: 10.3969/j.issn.1002-2082.2011.04.017
    [17]
    DIWAKAR M, KUMAR M. A review on CT image noise and its denoising[J]. Biomedical Signal Processing and Control, 2018, 42: 73-88. doi: 10.1016/j.bspc.2018.01.010
    [18]
    BEHARA K N S, BHASKAR A, CHUNG E. A DBSCAN-based framework to mine travel patterns from origin-destination matrices: Proof-of-concept on proxy static OD from Brisbane[J]. Transportation Research Part C: Emerging Technologies, 2021, 131: 103370. doi: 10.1016/j.trc.2021.103370
    [19]
    GIRI K, BISWAS T K, SARKAR P. ECR-DBSCAN: An improved DBSCAN based on computational geometry[J]. Machine Learning with Applications, 2021, 6: 100148. doi: 10.1016/j.mlwa.2021.100148
    [20]
    张堡瑞, 肖宇峰, 郑又能. 基于激光雷达与视觉融合的水面漂浮物检测[J]. 应用激光, 2021, 41(3): 619-628.
    [21]
    黄强, 潘常春, 裴凌, 等. 基于可重构标定板的激光与视觉联合标定方法[J]. 导航定位与授时, 2021, 8(3): 27-33.
    [22]
    卢莉萍, 张晓倩. 复杂环境下多传感器目标识别的数据融合方法[J]. 西安电子科技大学学报, 2020, 47(4): 31-38.
    [23]
    KASPI O, YOSIPOF A, SENDEROWITZ H. RANdom SAmple Consensus (RANSAC) algorithm for material-informatics: Application to photovoltaic solar cells[J]. Journal of Cheminformatics, 2017, 9(1): 1-15. doi: 10.1186/s13321-016-0187-6
    [24]
    杨洋, 张博立, 查家翼, 等. 玉米行间导航线实时提取[J]. 农业工程学报, 2020, 36(12): 162-171. doi: 10.11975/j.issn.1002-6819.2020.12.020
  • Cited by

    Periodical cited type(2)

    1. 赵伟杰,冯晓华,梁競文,莫颖芬,朱灿俊,束刚,高萍,王松波,王丽娜,江青艳. 甘露寡糖干预采食高脂饲粮罗曼蛋鸡的脂肪肝综合征. 华南农业大学学报. 2024(01): 15-22 . 本站查看
    2. 崔海燕,纪龙翔,郭红伟,邱红丽. 牛至油对白羽肉鸡生长性能和肉品质的影响. 饲料研究. 2022(16): 48-53 .

    Other cited types(1)

Catalog

    Article views (1126) PDF downloads (415) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return