LI Yunpeng, SHI Yufeng, WU Binfang, et al. Development and application of vitamin C sensor with synergistic sensitization of gold nanoparticles and multi walled carbon nanotubes[J]. Journal of South China Agricultural University, 2022, 43(5): 115-123. DOI: 10.7671/j.issn.1001-411X.202112005
    Citation: LI Yunpeng, SHI Yufeng, WU Binfang, et al. Development and application of vitamin C sensor with synergistic sensitization of gold nanoparticles and multi walled carbon nanotubes[J]. Journal of South China Agricultural University, 2022, 43(5): 115-123. DOI: 10.7671/j.issn.1001-411X.202112005

    Development and application of vitamin C sensor with synergistic sensitization of gold nanoparticles and multi walled carbon nanotubes

    More Information
    • Received Date: December 03, 2021
    • Available Online: May 17, 2023
    • Objective 

      A low-cost and high response electrochemical sensor for vitamin C was developed to realize the rapid detection of vitamin C content in fruits and vegetables.

      Method 

      MWCNTs/Au/PGE electrode with strong catalytic response to vitamin C was constructed by modifying gold nanoparticles and multi walled carbon nanotubes on pencil lead electrode. The electrode was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and cyclic voltammetry. The application range and optimal condition of the electrode pH were determined by differential pulse voltammetry. The standard curve and equation were established by time-current method to realize rapid detection. Finally, the vitamin C content of tomato was detected by standard addition recovery method.

      Result 

      The vitamin C electrochemical sensor based on MWCNTs/Au/PGE electrode could accurately determine the vitamin C content in the range of pH 4–8, and its performance was the best when pH was 5. During rapid detection, the detection mass fraction range was 1–500 μg/g, sensitivity up to 0.244 μA·(μg/g)−1·cm−2. The interference rates of the sensor to glucose, malic acid and citric acid were less than 1.77%, and the relative standard deviation (RSD) measured by the same sensor for many times was 2.7%. The vitamin C content of tomato sample was 69.42 μg/g, the recovery was 109%–113%, and the RSD was less than 2.26%.

      Conclusion 

      MWCNTs/Au/PGE electrode has the advantages of simple preparation process, low cost, high sensitivity, wide measurement range, strong stability and anti-interference. It provides a new idea for the rapid detection of vitamin C in fruits and vegetables.

    • [1]
      赵春江. 智慧农业的发展现状与未来展望[J]. 华南农业大学学报, 2021, 42(6): 1-7. doi: 10.7671/j.issn.1001-411X.202108039
      [2]
      罗锡文, 廖娟, 胡炼, 等. 我国智能农机的研究进展与无人农场的实践[J]. 华南农业大学学报, 2021, 42(6): 8-17.
      [3]
      岳学军, 蔡雨霖, 王林惠, 等. 农情信息智能感知及解析的研究进展[J]. 华南农业大学学报, 2020, 41(6): 14-28.
      [4]
      郭新波, 唐岳立, 孙小芬, 等. 高等植物维生素C和维生素E代谢调控[J]. 植物生理学报, 2011, 47(8): 731-744.
      [5]
      MEDINA-LOZANO I, BERTOLÍN J R, DÍAZ A. Nutritional value of commercial and traditional lettuce (Lactuca sativa L.) and wild relatives: Vitamin C and anthocyanin content[J]. Food Chemistry, 2021, 359: 129864. DOI: 10.1016/j.foodchem.2021.129864.
      [6]
      MILADINOV Z, BALESEVIC TUBIC S, CRNOBARAC J, et al. Effects of foliar application of solutions of ascorbic acid, glycine betaine, salicylic acid on the yield and seed germination of soybean in South Eastern Europe conditions[J]. Zemdirbyste-Agriculture, 2020, 107(4): 337-344. doi: 10.13080/z-a.2020.107.043
      [7]
      王霞, 张维谊, 韩奕奕, 等. 高效液相色谱法测定水果和蔬菜中维生素C含量的不确定度评定[J]. 食品与机械, 2021, 37(5): 73-77.
      [8]
      PORTO I S A, SANTOS NETO J H, DOS SANTOS L O, et al. Determination of ascorbic acid in natural fruit juices using digital image colorimetry[J/OL]. Microchemical Journal, 2019, 149: 104031. [2021-11-25].https://doi.org/10.1016/j.microc.2019.104031.
      [9]
      张爱菊, 张小林. 荧光猝灭法测定维生素C片和果汁饮料中抗坏血酸的含量[J]. 理化检验(化学分册), 2020, 56(4): 395-399.
      [10]
      叶青, 江志波. 酸碱滴定法与碘滴定法测定维生素C[J]. 理化检验(化学分册), 2007, 43(5): 410.
      [11]
      温欣荣, 涂常青. 分光光度法测定水果中维生素C[J]. 化学世界, 2019, 60(1): 12-17.
      [12]
      邱清莲, 吴斯燕, 刘光兰, 等. 含葡萄籽提取物的维生素C的测定[J]. 食品安全质量检测学报, 2018, 9(1): 39-44.
      [13]
      李琛, 许庆铎, 边勇. 基于微流控阻抗传感器检测番茄环斑病毒[J]. 农业工程学报, 2020, 36(16): 142-148. doi: 10.11975/j.issn.1002-6819.2020.16.018
      [14]
      杨康兵, 赵树鑫, 李方慧, 等. 基于多壁碳/金纳米管制备电极测定烟草中14-3-3蛋白与蛋白印迹的方法比较[J]. 昆明理工大学学报(自然科学版), 2021, 46(3): 132-140.
      [15]
      张艳, 杜海军, 杜科志, 等. 电化学传感器检测植物生长调节剂的研究进展[J]. 化学试剂, 2021, 43(4): 458-465.
      [16]
      李庆伟, 刘峥, 李海莹, 等. 金属有机骨架材料修饰玻碳电极循环伏安法测定维生素C片中抗坏血酸[J]. 理化检验(化学分册), 2017, 53(11): 1259-1264.
      [17]
      张巧云, 程玮玮, 张岩, 等. 纳米多孔金电化学传感器构建及其对饮品中抗坏血酸的检测[J]. 食品科学, 2021, 42(20): 274-279.
      [18]
      ALONSO-LOMILLO M A, DOMÍNGUEZ-RENEDO O, SALDAÑA-BOTÍN A, et al. Determination of ascorbic acid in serum samples by screen-printed carbon electrodes modified with gold nanoparticles[J]. Talanta, 2017, 174: 733-737. doi: 10.1016/j.talanta.2017.07.015
      [19]
      王晓健, 晋日亚, 乔怡娜, 等. 铅笔芯电化学传感器研究进展[J]. 应用化工, 2020, 49(1): 217-220.
      [20]
      MOHAMMAD-REZAEI R, SOROODIAN S, ESMAEILI G. Manganese oxide nanoparticles electrodeposited on graphenized pencil lead electrode as a sensitive miniaturized pH sensor[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(3): 1998-2005. doi: 10.1007/s10854-018-0471-5
      [21]
      郑霄, 陈苏靖, 李芳芳, 等. 基于活化铅笔芯电极的扑热息痛电化学传感器[J]. 分析科学学报, 2020, 36(1): 13-18.
      [22]
      TORRINHA Á, AMORIM C G, MONTENEGRO M C B S M, et al. Biosensing based on pencil graphite electrodes[J]. Talanta, 2018, 190: 235-247. doi: 10.1016/j.talanta.2018.07.086
      [23]
      CHEN G, ZHENG J. Non-enzymatic electrochemical sensor for nitrite based on a graphene oxide-polyaniline-Au nanoparticles nanocomposite[J/OL]. Microchemical Journal, 2021, 164: 106034. [2021-11-25]. https://doi.org/10.1016/j.microc.2021.106034.
      [24]
      XIAO T, HUANG J, WANG D, et al. Au and Au-based nanomaterials: Synthesis and recent progress in electrochemical sensor applications[J/OL]. Talanta, 2020, 206: 120210. [2021-11-25]. https://doi.org/10.1016/j.talanta.2019.120210.
      [25]
      KILELE J C, CHOKKAREDDY R, REDHI G G. Ultra-sensitive electrochemical sensor for fenitrothion pesticide residues in fruit samples using IL@CoFe2O4NPs@MWCNTs nanocomposite[J/OL]. Microchemical Journal, 2021, 164: 106012. [2021-11-25]. https://doi.org/10.1016/j.microc.2021.106012.
      [26]
      NAWAZ M A H, MAJDINASAB M, LATIF U, et al. Development of a disposable electrochemical sensor for detection of cholesterol using differential pulse voltammetry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 159: 398-405. doi: 10.1016/j.jpba.2018.07.005
      [27]
      NAVRATIL R, KOTZIANOVA A, HALOUZKA V, et al. Polymer lead pencil graphite as electrode material: Voltammetric, XPS and Raman study[J]. Journal of Electroanalytical Chemistry, 2016, 783: 152-160. doi: 10.1016/j.jelechem.2016.11.030
      [28]
      LIU D, LI M, LI H, et al. Core-shell Au@Cu2O-graphene-polydopamine interdigitated microelectrode array sensor for in situ determination of salicylic acid in cucumber leaves[J/OL]. Sensors and Actuators B: Chemical, 2021, 341: 130027. [2021-11-25]. https://doi.org/10.1016/j.snb.2021.130027.
      [29]
      LI P, LIU Z, YAN Z, et al. An Electrochemical sensor for determination of vitamin B2 and B6 based on AuNPs@PDA-RGO modified glassy carbon electrode[J]. Journal of the Electrochemical Society, 2019, 166(10): B821-B829. doi: 10.1149/2.1281910jes
      [30]
      WU L, LU Z, YE J. Enzyme-free glucose sensor based on layer-by-layer electrode position of multilayer films of multi-walled carbon nanotubes and Cu-based metal framework modified glassy carbon electrode[J]. Biosensors Bioelectronics, 2019, 135: 45-49. doi: 10.1016/j.bios.2019.03.064
      [31]
      SHA R, BADHULIKA S. Facile green synthesis of reduced graphene oxide/tin oxide composite for highly selective and ultra-sensitive detection of ascorbic acid[J]. Journal of Electroanalytical Chemistry, 2018, 816: 30-37. doi: 10.1016/j.jelechem.2018.03.033
      [32]
      LI Q, HUO C, YI K, et al. Preparation of flake hexagonal BN and its application in electrochemical detection of ascorbic acid, dopamine and uric acid[J]. Sensors and Actuators B: Chemical, 2018, 260: 346-356. doi: 10.1016/j.snb.2017.12.208
      [33]
      龚德状, 关桦楠, 吴巧艳, 等. 基于金磁微粒模拟酶电化学增强体系检测抗坏血酸[J]. 食品科学, 2020, 41(16): 151-157.
      [34]
      DOKUR E, GORDUK O, SAHIN Y. Selective electrochemical sensing of riboflavin based on functionalized multi-walled carbon nanotube/gold nanoparticle/pencil graphite electrode [J/OL]. ECS Journal of Solid State Science and Technology, 2020, 9(12): 121003. [2021-11-25]. https://doi.org/10.1149/2162-8777/abcdff.
      [35]
      LI H, WANG C, WANG X, et al. Disposable stainless steel-based electrochemical microsensor for in vivo determination of indole-3-acetic acid in soybean seedlings[J]. Biosensors Bioelectronics, 2019, 126: 193-199. doi: 10.1016/j.bios.2018.10.041
    • Related Articles

      [1]XIE Wenjuan, HUANG Jiang, MA Xiaojun. Localization of 45S and 5S rDNA sequences on chromosomes of 20 species of Cucurbitaceous plants[J]. Journal of South China Agricultural University, 2019, 40(6): 74-81. DOI: 10.7671/j.issn.1001-411X.201811048
      [2]WANG Hong, HUANG Liejian, HU Feng. Efficient bud inducing and proliferation of 16-year-old Acacia auriculiformis plant[J]. Journal of South China Agricultural University, 2016, 37(5): 91-97. DOI: 10.7671/j.issn.1001-411X.2016.05.016
      [3]LIU Yunhua, WU Yixin, YANG Shaocong, HE Pengfei, HE Yueqiu. Screening of phosphorus-solubilizing strain Burkholderia cenocepacia and optimizing of phosphate-dissolving culture condition[J]. Journal of South China Agricultural University, 2015, 36(3): 78-82. DOI: 10.7671/j.issn.1001-411X.2015.03.014
      [4]The Sequence Analysis of 16S rDNA of Ralstonia solanacearum from Guangdong[J]. Journal of South China Agricultural University, 2009, 30(4). DOI: 10.7671/j.issn.1001-411X.2009.04.006
      [5]ZHANG Song-bai1,2,ZHANG De-yong2,LUO Xiang-wen2,ZHANG Shu-guang1,LI Hua-ping1. Sequence Analysis of 16S Ribosomal DNA of Phytoplasma Associated with Rice Orange Leaf[J]. Journal of South China Agricultural University, 2009, 30(2). DOI: 10.7671/j.issn.1001-411X.2009.02.010
      [6]SHAN Zhen-ju,FENG Zhen,ZHOU Gen,DENG Xiao-ling. Cloning and Sequence Analysis of 16S rDNA of Citrus Huanglongbing Agents Collected from Five Provinces in South China[J]. Journal of South China Agricultural University, 2008, 29(2): 25-29. DOI: 10.7671/j.issn.1001-411X.2008.02.006
      [7]JI Tong-bin,LI Min-hui,WU Yun,XI Ping-gen,TAN Wan-zhong,JIANG Zi-de. rDNA-ITS Sequence Analysis of Synchytrium puerariae on Pueraria spp.[J]. Journal of South China Agricultural University, 2007, 28(2): 42-46. DOI: 10.7671/j.issn.1001-411X.2007.02.011
      [8]PENG Gui-xiang , WANG Hua-rong, ZHANG Guo-xia, HOU Wei, YUAN Qing-hua, TAN Zhi-yuan. Molecular study of endophytic nitrogen fixing bacteria isolated from Melinis minutiflora[J]. Journal of South China Agricultural University, 2005, 26(4): 73-76. DOI: 10.7671/j.issn.1001-411X.2005.04.018
      [9]Li Xiaoling Lin Huihuan Weng Yabiao. STUDIES ON THE PATHOGENICITY AND LIFE CYCLE OF Isospora suis[J]. Journal of South China Agricultural University, 1998, (4): 10-13.
      [10]Huang Wenhua , Gao Xuebiao , Lu Jihong. PATHOGEN IDENTIFICATION AND PATHOGENICITYOF THE CHINESE YAM ROOT ROT DISEASECAUSED BY LESION NEMATODES[J]. Journal of South China Agricultural University, 1994, (3): 35-38.
    • Cited by

      Periodical cited type(2)

      1. 张晓龙,杨倩楠,李祥东,陈静,王超,张池,刘科学. 基于主成分和聚类分析的赤红壤区不同土地利用方式土壤肥力综合评价. 江苏农业科学. 2023(09): 247-254 .
      2. 陈思静,杜爱林,李伏生. 不同滴灌施肥处理对种植马铃薯土壤有机碳组分和酶活性的影响. 华南农业大学学报. 2022(03): 34-41 . 本站查看

      Other cited types(1)

    Catalog

      Article views (213) PDF downloads (409) Cited by(3)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return