Citation: | CHU Fuchun, GONG Jinliang, ZHANG Yanfei. Orchard robot navigation in unstructured environment based on density adaptive RANSAC[J]. Journal of South China Agricultural University, 2022, 43(5): 99-107. DOI: 10.7671/j.issn.1001-411X.202111025 |
An orchard navigation scheme based on multi-sensor fusion was proposed to solve the problems of weak signal and poor positioning effect caused by tree occlusion in the GPS navigation process of orchard robot .
High-precision 3D point cloud data were collected by 16-line lidar, point cloud was preprocessed by Voxel grid filter algorithm, point cloud density was reduced and discrete points were removed, fruit tree rows were clustered by Euclidian algorithm, and the straight lines of fruit tree rows were fitted by improved random sampling consistency (RANSAC) algorithm. According to the relationship of parallel lines, the navigation line was calculated and integrated with inertial measurement unit (IMU) for high-precision positioning of orchard robot. Based on differential steering and pure tracking model, the goal of autonomous navigation and automatic line wrapping of orchard robot was realized.
After the data fusion of lidar and IMU, the accurate position and pose of the robot were obtained. Compared with the deviation produced by the least square method and the traditional RANSAC method, the lateral deviation based on density adaptive RANSAC method was less than 0.1 m and the heading angle deviation was less than 1.5° when the robot was operating in the orchard at the speed of 0.8 m/s. The deviations were the minimum in the three methods. However, when the robot speed increased to 1.0 m/s, all the deviations increased obviously.
The orchard robot navigation technology based on multi-sensor fusion proposed in this paper is suitable for most standardized orchards and has important promotion value.
[1] |
王祺, 王艳玲, 俄胜哲. 我国果园机械装备现状及发展思路[J]. 农业机械, 2019(1): 109-111.
|
[2] |
LAN Y B, CHEN S D. Current status and trends of plant protection UAV and its spraying technology in China[J]. International Journal of Precision Agricultural Aviation, 2018, 1(1): 1-9.
|
[3] |
GONG J L, WANG M X, ZHANG Y F, et al. Flow and sound field analysis of agricultural ultrasonic atomizing nozzle[J]. International Journal of Precision Agricultural Aviation, 2019, 2(2): 32-37.
|
[4] |
秦喜田, 刘学峰, 任冬梅, 等. 我国果园生产机械化现状及其发展趋势[J]. 农业装备与车辆工程, 2019, 57(S1): 35-38.
|
[5] |
张漫, 季宇寒, 李世超, 等. 农业机械导航技术研究进展[J]. 农业机械学报, 2020, 51(4): 1-18. doi: 10.6041/j.issn.1000-1298.2020.04.001
|
[6] |
陈媛媛, 游炯, 幸泽峰, 等. 世界主要国家精准农业发展概况及对中国的发展建议[J]. 农业工程学报, 2021, 37(11): 315-324. doi: 10.11975/j.issn.1002-6819.2021.11.036
|
[7] |
刘成良, 林洪振, 李彦明, 等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报, 2020, 51(1): 1-18. doi: 10.6041/j.issn.1000-1298.2020.01.001
|
[8] |
何勇, 蒋浩, 方慧, 等. 车辆智能障碍物检测方法及其农业应用研究进展[J]. 农业工程学报, 2018, 34(9): 21-32. doi: 10.11975/j.issn.1002-6819.2018.09.003
|
[9] |
李道亮, 李震. 无人农场系统分析与发展展望[J]. 农业机械学报, 2020, 51(7): 1-12. doi: 10.6041/j.issn.1000-1298.2020.07.001
|
[10] |
周建军, 周文彬, 刘建东, 等. 果园机器人自动导航技术研究进展[J]. 计算机与数字工程, 2019, 47(3): 571-576.
|
[11] |
李秋洁, 丁旭东, 邓贤. 基于激光雷达的果园行间路径提取与导航[J]. 农业机械学报, 2020, 51(S2): 344-350. doi: 10.6041/j.issn.1000-1298.2020.S2.040
|
[12] |
莫冬炎, 杨尘宇, 黄沛琛, 等. 基于环境感知的果园机器人自主导航技术研究进展[J]. 机电工程技术, 2021, 50(9): 145-150. doi: 10.3969/j.issn.1009-9492.2021.09.038
|
[13] |
BLOK P M, SUH H K, VAN BOHEEMEN K, et al. Autonomous in-row navigation of an orchard robot with a 2D LIDAR scanner and particle filter with a laser-beam model[J]. Journal of Institute of Control, Robotics and Systems, 2018, 24(8): 726-735. doi: 10.5302/J.ICROS.2018.0078
|
[14] |
姬长英, 周俊. 农业机械导航技术发展分析[J]. 农业机械学报, 2014, 45(9): 44-54. doi: 10.6041/j.issn.1000-1298.2014.09.008
|
[15] |
赛炜, 孙忠涵. 基于激光雷达的机器人智能导航系统研究[J]. 激光杂志, 2019, 40(11): 182-186.
|
[16] |
ZHANG H F, HONG Y, QIU J L. An off-policy least square algorithms with eligibility trace based on importance reweighting[J]. Cluster Computing, 2017, 20(4): 3475-3487. doi: 10.1007/s10586-017-1165-0
|
[17] |
FOTOUHI M, HEKMATIAN H, KASHANI-NEZHAD M A, et al. SC-RANSAC: Spatial consistency on RANSAC[J]. Multimedia Tools and Applications, 2019, 78(7): 9429-9461. doi: 10.1007/s11042-018-6475-6
|
[18] |
SANGAPPA H K, RAMAKRISHNAN K R. A probabilistic analysis of a common RANSAC heuristic[J]. Machine Vision and Applications, 2019, 30(1): 71-89. doi: 10.1007/s00138-018-0973-4
|
[19] |
张华强, 王国栋, 吕云飞, 等. 基于改进纯追踪模型的农机路径跟踪算法研究[J]. 农业机械学报, 2020, 51(9): 18-25. doi: 10.6041/j.issn.1000-1298.2020.09.002
|
1. |
林子钧,尤德安,廖滔,张嘉谋,彭志锋,王红军. 基于GNSS+IMU的草方格固沙机自动巡航控制系统. 农机化研究. 2024(05): 37-44 .
![]() | |
2. |
何杰,魏正辉,胡炼,汪沛,黄培奎,丁帅奇. 基于两位置法与改进STEKF的农机航向角测量方法. 农业机械学报. 2024(12): 365-372 .
![]() | |
3. |
陈学深,熊悦淞,齐龙,王宣霖,程楠,梁俊,刘善健. 基于触感引导的小型水田行进底盘自动对行方法. 农业工程学报. 2022(21): 8-15 .
![]() | |
4. |
曹丽琴,王琪,黄堃,徐成杰,石云波,马宗敏,程林. 基于微机电系统传感器的杆塔倾斜度无线监测系统. 科学技术与工程. 2021(02): 616-622 .
![]() | |
5. |
张智刚,王明昌,毛振强,王辉,丁凡,李洪开,张天. 基于星基增强精密单点定位的农机自动导航系统开发与测试. 华南农业大学学报. 2021(06): 109-116 .
![]() | |
6. |
周俊,许建康,王耀羲,梁友斌. 基于GNSS的智能水田旋耕平地机研究. 农业机械学报. 2020(04): 38-43 .
![]() | |
7. |
苏静. 船舶航向实时控制算法优化. 舰船科学技术. 2020(12): 55-57 .
![]() |