XIE Longfei, XIAO Danyu, CHANG Yi, et al. Effect of CRISPR/Cas system on drug resistance and virulence genes of Staphylococcus aureus[J]. Journal of South China Agricultural University, 2023, 44(2): 179-186. DOI: 10.7671/j.issn.1001-411X.202111024
    Citation: XIE Longfei, XIAO Danyu, CHANG Yi, et al. Effect of CRISPR/Cas system on drug resistance and virulence genes of Staphylococcus aureus[J]. Journal of South China Agricultural University, 2023, 44(2): 179-186. DOI: 10.7671/j.issn.1001-411X.202111024

    Effect of CRISPR/Cas system on drug resistance and virulence genes of Staphylococcus aureus

    More Information
    • Received Date: November 20, 2021
    • Available Online: May 17, 2023
    • Objective 

      To understand the distribution of clustered regularly interspaced short palindromic repeats (CRISPR) in Staphylococcus aureus and analyze their effects on the horizontal transfer of antibiotic resistance gene and virulence gene.

      Method 

      Total 575 complete S. aureus genomes were obtained from public databases, and bioinformatics methods were used to count the CRISPR carriage, multi-locus sequence typing (MLST) types distribution of strains and the distribution of strain drug resistance genes and virulence genes. The significance analysis of the difference in the number of drug resistance genes and virulence genes was carried out between CRISPR structure-positive (CRISPR+) and CRISPR structure-negative (CRISPR−)S. aureus. The data of 60 strains of S. aureus were also analyzed by second-generation sequencing to verify the results of public database analysis. We also counted the carriage of prophages and conjugative plasmids in 60 strains of S. aureus in the laboratory, and discussed the effect of CRISPR structure on the prophages and conjugative plasmids of the strains.

      Result 

      Among the 575 strains with complete genome assembly, there were 62 strains with CRISPR structure (CRISPR+) and 513 strains without (CRISPR−). The number of drug resistance genes and virulence genes of CRISPR+S. aureus was less than that of CRISPR−S. aureus, and the difference was significant. Among 60 strains of S. aureus in the laboratory, there were 14 strains of CRISPR+ and 46 strains of CRISPR−. CRISPR+S. aureus carried fewer drug resistance genes and virulence genes, which was consistent with the results of the public database analysis. Analysis of prophages and conjugative plasmids showed that CRISPR− strains carried more prophage sequences, which were significantly different from CRISPR+ strains (P<0.05). For conjugative plasmids, CRISPR− and CRISPR+ strains were largely consistent with no significant difference.

      Conclusion 

      CRISPR structure may limit the horizontal transfer of drug resistance and virulence genes in S. aureus, and CRISPR− strains are more susceptible to be interfered by phage and removable plasmids. This study provides a reference for further research on transmission of drug resistance and virulence genes inS. aureus.

    • [1]
      CHEN L, TANG Z Y, CUI S Y, et al. Biofilm production ability, virulence and antimicrobial resistance genes in Staphylococcus aureus from various veterinary hospitals[J]. Pathogens, 2020, 9(4): 264. doi: 10.3390/pathogens9040264.
      [2]
      SHOPSIN B, KREISWIRTH B N. Molecular epidemiology of methicillin-resistant Staphylococcus aureus[J]. Emerging Infectious Diseases, 2001, 7(2): 323-326. doi: 10.3201/eid0702.010236
      [3]
      KRISHNA S, MILLER L S. Host-pathogen interactions between the skin and Staphylococcus aureus[J]. Current Opinion Microbiology, 2012, 15(1): 28-35. doi: 10.1016/j.mib.2011.11.003
      [4]
      毛婷婷. 金黄色葡萄球菌CRISPR结构及耐药毒力分子特征[D]. 郑州: 郑州大学, 2019.
      [5]
      LINDSAY J A. Staphylococcus aureus genomics and the impact of horizontal gene transfer[J]. International Journal of Medical Microbiology, 2014, 304(2): 103-109. doi: 10.1016/j.ijmm.2013.11.010
      [6]
      ANITHA P, ANBARASU A, RAMAIAH S. Gene network analysis reveals the association of important functional partners involved in anti-biotic resistance: A report on an important pathogenic bacterium Staphylococcus aureus[J]. Gene, 2016, 575(2): 253-263. doi: 10.1016/j.gene.2015.08.068
      [7]
      左祥, 查艳景, 王征. 金黄色葡萄球菌的临床分布及耐药基因研究[J]. 中国病原生物学杂志, 2017, 12(6): 566-569.
      [8]
      ITO T, OKUMA K, MA X X, et al. Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: Genomic island SCC[J]. Drug Resistance Updates, 2003, 6(1): 41-52. doi: 10.1016/S1368-7646(03)00003-7
      [9]
      ITO T, KATAYAMA Y, HIRAMATSU K. Cloning and nucleotide sequence determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315[J]. Antimicrobial Agents and Chemotherapy, 1999, 43(6): 1449-1458. doi: 10.1128/AAC.43.6.1449
      [10]
      KATAYAMA Y, ITO T, HIRAMATSU K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus[J]. Antimicrobial Agents and Chemotherapy, 2000, 44(6): 1549-1555. doi: 10.1128/AAC.44.6.1549-1555.2000
      [11]
      LIU J, CHEN D, PETERS B M. Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin-resistant Staphylococcus aureus[J]. Microbial Pathogenesis, 2016, 101: 56-67. doi: 10.1016/j.micpath.2016.10.028
      [12]
      SZCZEPANIK A, KOZIOL-MONTEWKA M, Al-DOORI Z, et al. Spread of a single multiresistant methicillin-resistant Staphylococcus aureus clone carrying a variant of staphylococcal cassette chromosome mec type III isolated in a university hospital[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2007, 26(1): 29-35.
      [13]
      BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712. doi: 10.1126/science.1138140
      [14]
      SOREK R, KUNIN V, HUGENHOLTZ P. CRISPR: A widespread system that provides acquired resistance against phages in bacteria and archaea[J]. Nature Reviews Microbiology, 2008, 6(3): 181-186. doi: 10.1038/nrmicro1793
      [15]
      MARRAFFINI L A, SONTHEIMER E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA[J]. Science, 2008, 322(5909): 1843-1845. doi: 10.1126/science.1165771
      [16]
      张蒙蒙, 毕春霞, 王梦圆, 等. 葡萄球菌CRISPR-Cas系统的基因结构及其与耐药基因的关系[J]. 中国病原生物学杂志, 2019, 14(5): 553-559.
      [17]
      ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 1987, 169(12): 5429-5433. doi: 10.1128/jb.169.12.5429-5433.1987
      [18]
      LUO K, SHAO F, KAMARA K N, et al. Molecular characteristics of antimicrobial resistance and virulence determinants of Staphylococcus aureus isolates derived from clinical infection and food[J]. Journal of Clinical Laboratory Analysis, 2018, 32(7): e22456. doi: 10.1002/jcla.22456
      [19]
      GOPHNA U, KRISTENSEN D M, WOLF Y I, et al. No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales[J]. ISME Journal, 2015, 9(9): 2021-2027. doi: 10.1038/ismej.2015.20
      [20]
      BOLOTIN A, QUINQUIS B, SOROKIN A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin[J]. Microbiology-SGM, 2005, 151(8): 2551-2561. doi: 10.1099/mic.0.28048-0
      [21]
      PALMER K L, GILMORE M S. Multidrug-resistant enterococci lack CRISPR-cas[J]. mBio, 2010, 1(4): e00227-10.
      [22]
      BURSTEIN D, SUN C L, BROWN C T, et al. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems[J]. Nature Communications, 2016, 7: 10613. doi: 10.1038/ncomms10613.
      [23]
      JIANG W, MANIV I, ARAIN F, et al. Dealing with the evolutionary downside of CRISPR immunity: Bacteria and beneficial plasmids[J]. PLoS Genetics, 2013, 9(9): e1003844. doi: 10.1371/journal.pgen.1003844
      [24]
      TOUCHON M, CHARPENTIER S, POGNARD D, et al. Antibiotic resistance plasmids spread among natural isolates of Escherichia coli in spite of CRISPR elements[J]. Microbiology, 2012, 158(Pt 12): 2997-3004.
      [25]
      洪丽娟, 张冰, 段广才, 等. CRISPR/Cas系统与志贺菌毒力和耐药的关系及插入序列IS600对cse2表达水平的影响[J]. 微生物学报, 2016, 56(12): 1912-1923.
      [26]
      WATSON B N J, STAALS R H J, FINERAN P C. CRISPR-Cas-mediated phage resistance enhances horizontal gene transfer by transduction[J]. mBio, 2018, 9(1): e02406-17.
      [27]
      WIEDENHEFT B, BONDY-DENOMY J. CRISPR control of virulence in Pseudomonas aeruginosa[J]. Cell Research, 2017, 27(2): 163-164. doi: 10.1038/cr.2017.6
    • Cited by

      Periodical cited type(25)

      1. 胡兰梅,王丽娜,钱正敏,曹成全,魏福伦,唐艳龙. 生物农药印楝素对三叶虫萤幼虫的毒力测定. 湖北植保. 2025(01): 31-33 .
      2. 李俊杰,杨晓燕,唐慧琳,高俊恒,郭子坤,郭春阳,王冬寒,叶佳成,袁向群,李怡萍. 抑肽酶对防治梨小食心虫的两种植物源农药的增效作用. 植物保护学报. 2025(01): 105-112 .
      3. 薛育,侯则颖,王新谱. 苜蓿根瘤象成虫防控药剂筛选及助剂增效作用. 农业科学研究(中英文). 2025(01): 53-58 .
      4. 周陈杰,马闪闪,洪庆红,鲁吐浦拉,王肖庆,吴凯蝶,江文楠,张羽菲,王圣印. 13种杀虫剂对木橑尺蠖的室内毒力测定及田间防效. 甘肃农业大学学报. 2024(02): 171-178 .
      5. 常向前,吕亮,郑正安,王晶,邓颍骏,杨小林,王佐乾,张舒. 四种助剂对防治褐飞虱的植物源农药1%印楝素水分散粒剂毒力的影响. 昆虫学报. 2024(04): 490-497 .
      6. 赵秋兰,潘美佳,刘红芳. 紫堇乙醇提取物对草地贪夜蛾的杀虫活性及其成分分析. 南方农业. 2024(11): 48-51 .
      7. 舒本水,黄玉婷,余萱悦,刘翠婷,谢心怡,沈皓,林进添. 印楝素胁迫下草地贪夜蛾幼虫实时荧光定量PCR内参基因表达稳定性评价. 广东农业科学. 2024(08): 21-30 .
      8. 刘锦霞,李晶,张丹丹,李娜,付麟雲,丁品,吴孔明. 11种植物源杀虫活性成分对草地贪夜蛾的毒力测定. 植物保护. 2023(01): 351-356 .
      9. 刘琴,杨云福,刘现平,刘丽,成虹,李雪娇. 不同生物农药防治草地贪夜蛾试验效果. 云南农业. 2023(05): 65-67 .
      10. 冯磊,唐圣松,刘芳,戴长庚,邢济春,李鸿波. 7种生物杀虫剂对草地贪夜蛾和粘虫幼虫的毒力与防效. 环境昆虫学报. 2022(01): 35-43 .
      11. 黄阿国. 闽南地区草地贪夜蛾监测与田间药剂防治效果研究. 现代农业科技. 2022(06): 74-75+84 .
      12. 夏丽娟,李靖,梁竟宇,王学贵,朱新成,李彬,李涌泉. 印楝素对亚洲玉米螟的毒力与防效及对寄主作物高粱的安全性评价. 南京农业大学学报. 2022(03): 539-544 .
      13. 郭志敏,吕海翔,马康生,万虎,郭子平,李建洪. 7种生物源杀虫剂对草地贪夜蛾的室内毒力研究. 安徽农业科学. 2022(19): 139-143 .
      14. 雷琼,林鑫,巨亚绒. 6种农药对陕西省关中地区草地贪夜蛾的田间药效试验. 农业工程. 2022(08): 131-134 .
      15. 何文,张秀芬,黄珍玲,黄小娟,蒋婷,郭素云. 两种植物源杀虫剂对甘薯小象甲的室内防效. 农业研究与应用. 2022(06): 32-36 .
      16. Jing WAN,HUANG Cong,LI Chang-you,ZHOU Hong-xu,REN Yong-lin,LI Zai-yuan,XING Long-sheng,ZHANG Bin,QIAO Xi,LIU Bo,LIU Cong-hui,XI Yu,LIU Wan-xue,WANG Wen-kai,QIAN Wan-qiang,Simon MCKIRDY,WAN Fang-hao. Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda(Lepidoptera: Noctuidae). Journal of Integrative Agriculture. 2021(03): 646-663 .
      17. 太一梅,李志敏,朱晓明,刘萍,李貌,毕金华,朱斌. 生物农药对草地贪夜蛾的田间防治效果. 中国植保导刊. 2021(03): 66-68+77 .
      18. 汤云霞,桑芝萍,赵健,潘丹丹. 沿海地区7种生物农药防治玉米田草地贪夜蛾的药效试验简报. 上海农业科技. 2021(03): 111-112+114 .
      19. 范建,杜红莲,汉瑞林,杨继琼,马玉梅,周立为. 3种生物药剂对玉米草地贪夜蛾的防治效果. 云南农业科技. 2021(05): 34-35 .
      20. 陈秀琴,刘其全,田新湖,何玉仙,邱良妙,占志雄. 草地贪夜蛾生物防治研究进展. 福建农业学报. 2021(08): 981-988 .
      21. 邵雪花,赖多,匡石滋. FOXO基因对印楝素诱导sf9细胞凋亡的影响. 广东农业科学. 2021(11): 96-102 .
      22. 张海波,王风良,陈永明,于淦军,褚姝频,卢鹏,陈华,朱加萍,车晋英,张芳,周福才. 核型多角体病毒对玉米草地贪夜蛾的控制作用研究. 植物保护. 2020(02): 254-260 .
      23. 梁沛,谷少华,张雷,高希武. 我国草地贪夜蛾的生物学、生态学和防治研究概况与展望. 昆虫学报. 2020(05): 624-638 .
      24. 葛阳,孙嘉惠,王铁霖,石旺鹏,袁庆军,郭兰萍. 药源植物在草地贪夜蛾防控中的应用研究进展. 植物保护学报. 2020(04): 706-718 .
      25. 刘丁予,李昂. 3种生物农药对草地贪夜蛾的防效试验. 云南农业科技. 2020(S1): 11-13 .

      Other cited types(18)

    Catalog

      Article views (314) PDF downloads (507) Cited by(43)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return