• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
SUN Jianfeng, XING Kaifeng, YANG Zhou, et al. Simulation and experimental research on fruit branch pruning process based on ANSYS/LS-DYNA[J]. Journal of South China Agricultural University, 2022, 43(4): 113-124. DOI: 10.7671/j.issn.1001-411X.202111010
Citation: SUN Jianfeng, XING Kaifeng, YANG Zhou, et al. Simulation and experimental research on fruit branch pruning process based on ANSYS/LS-DYNA[J]. Journal of South China Agricultural University, 2022, 43(4): 113-124. DOI: 10.7671/j.issn.1001-411X.202111010

Simulation and experimental research on fruit branch pruning process based on ANSYS/LS-DYNA

More Information
  • Received Date: November 09, 2021
  • Available Online: May 17, 2023
  • Objective 

    The goal was to in depth study the pruning process characteristics and cutting mechanism of fruit branches, and provide a reference for optimizing the core cutting components of pruning machines and improving the cutting performance of electric pruning machines.

    Method 

    Taking the branch of ‘Shixia’variety of longan as the test object, ANSYS/LS-DYNA was used to perform finite element simulation of the branch cutting process. We built a branch cutting test platform for cutting experiments, verified the accuracy of the simulation model, used a high-speed camera to observe the branch cutting process, analyzed the stress distribution and cutting mechanism of moving blades, branches, and fixed blades in the cutting process, and determined the area where the maximum equivalent stress occured.

    Result 

    The cutting process of actual test and simulation test could be divided into five stages including the extrusion stage, cutting-in shearing stage, stable shearing stage, shearing stage and branch vibration stage. The actual cutting force was slightly higher than the simulation value. The maximum relative error between the actual value and the simulation value of the peak cutting force of the cutter for cutting 10, 15 and 20 mm diameter branches was 7.8%, and the average relative error was 7.0%. The trends of the experimental and simulated cutting force curves were roughly the same. During the cutting process, the maximum equivalent stresses of the moving blade, branch and fixed knife appeared near the cutting edge, branch and fixed knife cut. The maximum equivalent stresses of the moving blade and fixed knife were both less than the yield limits of the tool materials, and the tools would not fail.

    Conclusion 

    The finite element model is basically consistent with the actual situation and has certain reference value for the design and improvement of pruning machine.

  • [1]
    国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020.
    [2]
    周冬菊. 果树整形修剪技术[J]. 现代农业科技, 2021(14): 87-88. doi: 10.3969/j.issn.1007-5739.2021.14.038
    [3]
    程新辉, 孙红梅, 史洪丹. 新时期果树修剪的意义及技术要领初探[J]. 农业开发与装备, 2021(4): 118-119. doi: 10.3969/j.issn.1673-9205.2021.04.052
    [4]
    秦喜田, 刘学峰, 任冬梅, 等. 我国果园生产机械化现状及其发展趋势[J]. 农业装备与车辆工程, 2019, 57(S1): 35-38.
    [5]
    马静, 梁堃. 果树枝条修剪机械化及自动化研究进展[J]. 广东蚕业, 2020, 54(9): 84-86. doi: 10.3969/j.issn.2095-1205.2020.09.39
    [6]
    PONI S, TOMBESI S, PALLIOTTI A, et al. Mechanical winter pruning of grapevine: Physiological bases and applications[J]. Scientia Horticulturae, 2016, 204: 88-98.
    [7]
    ALENCAR A S C, ROCHA NETO A R, GOMES J P P. A new pruning method for extreme learning machines via genetic algorithms[J]. Applied Soft Computing, 2016: 44101-44107.
    [8]
    郑永军, 江世界, 陈炳太, 等. 丘陵山区果园机械化技术与装备研究进展[J]. 农业机械学报, 2020, 51(11): 1-20. doi: 10.6041/j.issn.1000-1298.2020.11.001
    [9]
    夏侯炳, 盛玲玲, 宋淑然, 等. 基于层次分析的山地果园生产机械化评价研究[J]. 农机化研究, 2020, 42(5): 250-257. doi: 10.3969/j.issn.1003-188X.2020.05.044
    [10]
    孙健峰, 霍东飞, 李波, 等. 基于仿生微织构的电动修剪机刀具磨损性能研究[J]. 农业机械学报, 2020, 51(S2): 593-602. doi: 10.6041/j.issn.1000-1298.2020.S2.073
    [11]
    吴良军, 段洁利, 郭海龙, 等. 果园电动修剪机剪切功耗影响因素的试验研究[J]. 农业装备与车辆工程, 2020, 58(6): 39-43. doi: 10.3969/j.issn.1673-3142.2020.06.009
    [12]
    SUN J, LI B, XING K, et al. Study on anti-friction mechanism of canna-leaf biomimetic micro-textured fruit tree[J]. Agronomy, 2020, 10(12): 1866. doi: 10.3390/agronomy10121866
    [13]
    刘晓敏, 赵登超, 罗林辉, 等. 仿生物体表非光滑微织构形态刀具应用及发展[J]. 机械设计与研究, 2019, 35(3): 114-118.
    [14]
    孙健峰, 杨洲, 张庆茂, 等. 果园电动修剪刀片摩擦磨损性能研究[J]. 江苏农业科学, 2016, 44(4): 371-373.
    [15]
    王芳, 付业彬, 杨铮, 等. 向日葵茎秆切割能耗实验研究[J]. 农机化研究, 2022, 44(6): 194-198. doi: 10.3969/j.issn.1003-188X.2022.06.033
    [16]
    王慰祖, 吴良军, 杨洲, 等. 树枝直刃剪切数学模型与试验[J]. 华南农业大学学报, 2016, 37(4): 105-111. doi: 10.7671/j.issn.1001-411X.2016.04.017
    [17]
    康峰, 仝思源, 张汉石, 等. 苹果枝条往复式切割剪枝参数分析与试验[J]. 农业工程学报, 2020, 36(16): 9-16. doi: 10.11975/j.issn.1002-6819.2020.16.002
    [18]
    张燕青, 崔清亮, 郭玉明, 等. 谷子茎秆切割力学特性试验与分析[J]. 农业机械学报, 2019, 50(4): 146-155. doi: 10.6041/j.issn.1000-1298.2019.04.016
    [19]
    VU V D, NGO Q H, NGUYEN T T, et al. Multi-objective optimisation of cutting force and cutting power in chopping agricultural residues[J]. Biosystems Engineering, 2020, 191: 107-115.
    [20]
    MATHANKER S K, GRIFT T E, HANSEN A C. Effect of blade oblique angle and cutting speed on cutting energy for energycane stems[J]. Biosystems Engineering, 2015, 133: 64-70.
    [21]
    刘威威. 荔枝采摘机器人末端执行器优化设计及仿真分析[D]. 广州: 华南农业大学, 2018.
    [22]
    吴良军. 龙眼树枝剪切机理与修剪机具优化研究[D]. 广州: 华南农业大学, 2014.
    [23]
    KOLLMANN F F P, COTE W A JR. 木材学与木材工艺学原理: 实体木材[M]. 江良游, 译. 北京: 中国林业出版社, 1991: 55-67.
    [24]
    黄汉东, 王玉兴, 唐艳芹, 等. 甘蔗切割过程的有限元仿真[J]. 农业工程学报, 2011, 27(2): 161-166.
    [25]
    日本工业标准调查会. JIS G4401-2009: 碳素工具钢[S]. 东京: 日本规格协会, 2009.
    [26]
    赵锋. 微型气力式砍蔗器的设计与研究[D]. 广州: 华南农业大学, 2007.
    [27]
    庞声海. 盘刀式切碎器设计的数学解析法[J]. 农业机械学报, 1981, 12(2): 43-51.
    [28]
    庞声海. 关于滑切理论与滑切角的选用[J]. 华中农学院学报, 1982, 1(2): 64-69.
    [29]
    任宁. 木材微观构造对受载断裂的影响方式研究[D]. 哈尔滨: 东北林业大学, 2007.
    [30]
    李波. 基于仿生凸包型微织构果树修剪刀具减摩机理研究[D]. 广州: 华南农业大学, 2020.
  • Cited by

    Periodical cited type(7)

    1. 王铎,刘志刚,韩志武,张强,张楠楠,裴承慧. 灌木平茬锯片的仿生设计与试验验证. 林产工业. 2025(03): 57-62 .
    2. 雷如飞. 重型绿篱修剪机刀具的可靠性提升策略. 南方农机. 2024(11): 194-195+198 .
    3. 徐树英,陈淦兴,林常,刘世豪. 香蕉茎秆轧辊式压榨脱水机设计与试验. 农业工程学报. 2024(19): 21-32 .
    4. 刘丽敏,任萍,陈建能,张雪恒. 基于作物力学特性的甘蔗收割机参数优化与田间试验. 浙江农业学报. 2023(05): 1187-1194 .
    5. 梁堃,胡昀. 基于改进卷积网络的葡萄剪枝关键算法研究. 自动化与仪器仪表. 2023(06): 58-62 .
    6. 陈月锋,宋占华,刘天宏,董世平,景全荣,李法德,孙长征. 自走式杂交构树收割机设计及试验. 农业工程. 2023(07): 89-96 .
    7. 范方亮,邹胜良,张义广. 水下航行器变舵角滑行阻力数学建模分析. 舰船科学技术. 2022(20): 38-41+53 .

    Other cited types(10)

Catalog

    Article views (241) PDF downloads (462) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return