Citation: | LV Jia, LIU Zhijie, LIN Youxin, et al. Design and simulation of agricultural plant protection UAV with tilt-rotor of increased lift and efficiency[J]. Journal of South China Agricultural University, 2022, 43(4): 125-132. DOI: 10.7671/j.issn.1001-411X.202111007 |
In order to meet the field operation requirements, the UAV needs not only a rotor with the function of flexible take-off and landing, but also fixed wings with the characteristics of long endurance. A new agricultural plant protection UAV with X-shaped rotor and fixed wing hybrid structure as well as tilting function was designed.
According to the load dynamic requirements of farmland spraying operation, the airfoil and parameters of the lifting device of UAV were designed. The body structure of the plant protection UAV was built using SolidWorks software. The aerodynamic simulation analysis of the increasing lift and speed parameters of the plant protection UAV was carried out using the Fluent software and Spalart-Allmaras turbulence model.
The simulation results showed that the lift coefficient was positively correlated with the attack angle and the airspeed, and the influence of the attack angle was stronger when it changed from 4° to 6°. The lift coefficient reached 0.81 when the attack angle corresponded to the 5°−30° tilt angle. At the airspeed of 5 m/s, the relationship between the attack angle and the tilt angle almost showed linear distribution. Forward tilt of the nose could increase the lift coefficient, and then increase the payload, so that the overall operational efficiency of plant protection UAV was improved.
The study provides a basis for the design of plant protection UAV with tilt wing, and also offers a new idea for improving the endurance time and operation efficiency of plant protection UAV.
[1] |
周志艳, 臧英, 罗锡文, 等. 中国农业航空植保产业技术创新发展战略[J]. 农业工程学报, 2013, 29(24): 1-10. doi: 10.3969/j.issn.1002-6819.2013.24.001
|
[2] |
MOGILI U R, DEEPAK B B V L. Review on application of drone systems in precision agriculture[J]. Procedia Computer Science, 2018, 133: 502-509. doi: 10.1016/j.procs.2018.07.063
|
[3] |
纪景纯, 赵原, 邹晓娟, 等. 无人机遥感在农田信息监测中的应用进展[J]. 土壤学报, 2019, 56(4): 773-784. doi: 10.11766/trxb201811190508
|
[4] |
李继宇, 兰玉彬, 施叶茵. 旋翼无人机气流特征及大田施药作业研究进展[J]. 农业工程学报, 2018, 34(12): 104-118. doi: 10.11975/j.issn.1002-6819.2018.12.013
|
[5] |
LIU Z, HE Y Q, YANG L Y, et al. Control techniques of tilt rotor unmanned aerial vehicle systems: A review[J]. Chinese Journal of Aeronautics, 2017, 30(1): 135-148. doi: 10.1016/j.cja.2016.11.001
|
[6] |
朱源. 倾转旋翼飞机过渡模式动力学建模与控制研究[D]. 南京: 南京航空航天大学, 2005.
|
[7] |
AHMED M R, KOHAMA Y. Experimental investigation on the aerodynamic characteristics of a tandem wing configuration in close ground proximity[J]. JSME International Journal Series B, 1999, 42(4): 612-618. doi: 10.1299/jsmeb.42.612
|
[8] |
RADHAKRISHNAN A, SCHMITZ F.Quad tilt rotor aerodynamics in ground effect[C]//AIAA. 23rd AIAA Applied Aerodynamics Conference, Toronto: AIAA, 2005.
|
[9] |
HEGDE N T, GEORGE V I, NAYAK C G, et al. Design, dynamic modelling and control of tilt-rotor UAVs: A review[J]. International Journal of Intelligent Unmanned Systems, 2019, 8(3): 143-161. doi: 10.1108/IJIUS-01-2019-0001
|
[10] |
程尚. 倾转旋翼飞行器建模及仿真研究[D]. 南京: 南京航空航天大学, 2010.
|
[11] |
董凌华. 倾转旋翼/机翼气弹耦合动力学研究[D]. 南京: 南京航空航天大学, 2011.
|
[12] |
陈天予. 倾转四旋翼飞行器气动特性分析及设计研究[D].南京: 南京航空航天大学, 2018.
|
[13] |
文程祥. 小型四旋翼固定翼复合式无人机设计及控制研究[D]. 西安: 长安大学, 2017
|
[14] |
沙虹伟. 无人倾转旋翼机飞行力学建模与姿态控制技术研究[D]. 南京: 南京航空航天大学, 2007.
|
[15] |
赵广. 倾转旋翼机气动干扰分析及机翼优化[D].南昌: 南昌航空大学, 2019.
|
[16] |
宋佳佳. 小型四旋翼飞行器实验平台设计[D]. 武汉: 华中科技大学, 2012.
|
[17] |
高鸿渐. 微型碳纤维四旋翼无人机结构设计与优化[D]. 广汉: 中国民用航空飞行学院, 2018.
|
[18] |
徐勇勤. 高超声速飞行器总体概念研究[D]. 西安: 西北工业大学, 2005.
|
[19] |
卢凯文, 杨忠, 张秋雁, 等. 推力矢量可倾转四旋翼自抗扰飞行控制方法[J]. 控制理论与应用, 2020, 37(6): 1377-1387.
|
[20] |
DROANDI G, ZANOTTI A, GIBERTINI G, et al. Experimental investigation of the rotor-wing aerodynamic interaction in a tiltwing aircraft in hover[J]. The Aeronautical Journal, 2016, 119(1215): 591-612.
|
[21] |
刘雪松, 昂海松, 肖天航. 悬停状态旋翼间干扰对四旋翼升力影响分析[J]. 航空工程进展, 2014, 5(2): 148-153. doi: 10.3969/j.issn.1674-8190.2014.02.003
|
[22] |
徐嘉, 范宁军, 赵澍. 涵道飞行器涵道本体气动特性研究[J]. 弹箭与制导学报, 2009, 29(4): 174-178. doi: 10.3969/j.issn.1673-9728.2009.04.050
|
[23] |
黄俊. 大飞机总体综合设计技术[J]. 航空制造技术, 2009, 52(11): 34-38. doi: 10.3969/j.issn.1671-833X.2009.11.003
|
[24] |
张桥, 刘春义. 涵道风扇无人机基于FLUENT的性能分析[J]. 飞机设计, 2013, 33(3): 5-9.
|