Citation: | DU Pan, SUN Daozong, LI Zhen, et al. An expert system for diagnosing citrus diseases and pests based on fault tree analysis[J]. Journal of South China Agricultural University, 2022, 43(4): 106-112. DOI: 10.7671/j.issn.1001-411X.202110037 |
An expert system for diagnosing citrus diseases and pests based on fault tree analysis was developed to solve the problems of insufficient popularization of professional plant protection knowledge and lack of efficient diagnosis methods in the prevention and control of citrus diseases and pests.
First, fault tree analysis method was used to calculate the occurrence probability of diseases and pests and establish a knowledge base of diseases and pests. Secondly, based on the knowledge base and forward reasoning strategy, the reasoning engine of the expert system was designed and implemented. Finally, Weixin DevTools were used to equip the calculation rules of fault tree analysis method and the inference engine of expert system in weixin mini program, and build the expert system based on fault tree analysis method.
We established an expert system for diagnosing citrus diseases and pests with five functional modules: Pest knowledge module, latest information module, knowledge base query module, diseases and pest diagnosis module as well as user center module. After testing, the system could run smoothly in different types of mobile phones. The average size of memory occupied was 175 megabytes, the average time for system startup was 1.0984 s and the average time for page switching was 0.0495 s. After running the system continuously for 1 h, the connection between the mobile phone and the server was normal.
The system is stable and reliable, and the page style is displayed normally. Users can exploit the system to diagnose diseases and pests and obtain corresponding control methods. Meanwhile, users can also learn professional plant protection knowledge from the system.
[1] |
YOU J, LEE J. Offline mobile diagnosis system for citrus pests and diseases using deep compression neural network[J]. IET Computer Vision, 2020, 14(6): 370-377. doi: 10.1049/iet-cvi.2018.5784
|
[2] |
洪波, 张锋, 李英梅, 等. 基于微信平台的陕西蔬菜病虫害专家诊断系统[J]. 中国植保导刊, 2017, 37(12): 48-52. doi: 10.3969/j.issn.1672-6820.2017.12.008
|
[3] |
彭曙光, 唐前君, 肖启明, 等. 烟草病害诊断专家系统的建立与应用[J]. 中国烟草科学, 2010, 31(4): 28-32. doi: 10.3969/j.issn.1007-5119.2010.04.006
|
[4] |
RACHID L, MANAL J, ALIEU M, et al. Farmers’ knowledge, perceptions, and farm-level management practices of citrus pests and diseases in Morocco[J]. Journal of Plant Diseases and Protection, 2021, 128(5): 1-14.
|
[5] |
彭华亮. 基于故障树的故障诊断专家系统软件平台设计[D]. 南京: 南京理工大学, 2017.
|
[6] |
潘学文, 张福生, 路超. 基于故障树的故障诊断专家系统设计[J]. 煤矿机械, 2021, 42(3): 174-176.
|
[7] |
李艳艳, 刘佳, 孙澄泉, 等. 基于故障树的电动公交车故障诊断专家系统[J]. 机械设计与制造, 2009(1): 42-44. doi: 10.3969/j.issn.1001-3997.2009.01.017
|
[8] |
陈浩敏, 王军龙, 李俊一, 等. 基于故障模式与影响分析法和故障树的全光纤电流互感器故障诊断专家系统[J]. 电力系统及其自动化学报, 2019, 31(2): 1-8. doi: 10.3969/j.issn.1003-8930.2019.02.001
|
[9] |
彭奎, 邓亚辉, 赵星标, 等. 基于微信小程序的田间作物管理系统开发与应用[J]. 农村科技, 2018(10): 52-56. doi: 10.3969/j.issn.1002-6193.2018.10.019
|
[10] |
张妮, 刘铸德. 微信小程序在“互联网+农业”中的应用探析[J]. 广西农学报, 2019, 34(2): 42-45. doi: 10.3969/j.issn.1003-4374.2019.02.012
|
[11] |
张小斌, 杨素, 郑可锋, 等. 基于微信小程序的水稻减药增效信息服务平台实践与应用[J]. 农业网络信息, 2018(2): 77-80.
|
[12] |
李佳丹, 詹柴, 徐志豪. 基于微信的西瓜嫁接栽培管理专家系统开发与应用[J]. 南方农业, 2019, 13(16): 73-77.
|
[13] |
于俊丽. 高校图书馆应用微信小程序的实践与展望[J]. 出版广角, 2018(12): 73-75.
|
[14] |
倪红军, 李霞, 周巧扣, 等. 基于微信小程序的高校实验室安全教育平台构建[J]. 实验室研究与探索, 2020, 39(12): 280-284. doi: 10.3969/j.issn.1006-7167.2020.12.058
|
[15] |
周常勇. 柑橘[M]. 西安: 陕西科学技术出版社, 2020: 121-222.
|
[16] |
马凤梅, 李敦松, 张宝鑫. 中国柑桔病虫害及其综合治理研究概述[J]. 中国生物防治, 2007(S1): 87-92.
|
[17] |
罗义灿, 章勇, 刘家莉, 等. 粤东粤北柑桔病虫草害调查及农药使用状况分析[J]. 广东农业科学, 2018, 45(11): 81-88.
|
[18] |
NICHOLAS J, PHILIP A S, LUKASZ L S. Secondary hosts of the Asian citrus psyllid, Diaphorina citri Kuwayama: Survivorship and preference[J]. Journal of Applied Entomology, 2019, 143(9): 921-928. doi: 10.1111/jen.12673
|
[19] |
李丹. 江西户用沼气池故障树分析及养户技合模式仿真研究[D]. 南昌: 南昌大学, 2016.
|
[20] |
张宏宇, 王永模, 蔡万伦, 等. 我国主要柑橘害虫发生为害现状[J]. 湖北植保, 2009(S1): 52-53.
|