Citation: | HUA Chunjian, ZHANG Airong, JIANG Yi, et al. Lawn weed recognition based on improved fuzzy C-means clustering algorithm[J]. Journal of South China Agricultural University, 2022, 43(3): 107-115. DOI: 10.7671/j.issn.1001-411X.202109005 |
In order to realize the precise application of herbicides for lawn weed management, an improved fuzzy C-means (FCM) clustering segmentation algorithm was proposed to solve the problem that it is difficult to segment weeds due to the similar color between weeds and lawns in natural environment.
The region of interest was extracted by extra-green operator, and the multi-channel information in HSV space was incorporated for image preprocessing to expand the feature difference between weeds and lawns. The filtering range was constrained using region area to remove the lawn background noise in the preprocessed image and reduce the gray level loss in the target region caused by median filtering. An anisotropic detection operator of difference of gray distribution(DGD) was proposed. In the clustering process, the gray distribution difference characteristics in different directions around pixels were introduced to realize lawn weed segmentation.
Compared with the traditional FCM, FCM-S2, FCMNLS and RSFCM algorithms, the algorithm in this paper (DGDFCM) had better suppression effect on most noise areas and could achieve ideal weed segmentation effect. The DGDFCM algorithm could effectively segment lawn weeds, and the average segmentation accuracy was 91.45%, which was 16.35%, 4.12%, 6.80% and 8.06% higher than FCM, FCM-S2, FCMNLS and RSFCM algorithms, respectively.
The DGDFCM algorithm can effectively segment lawn weeds in natural environment, provides the condition of precise application of herbicides for lawn weeds, and has a practical application value.
[1] |
IGNATIEVA M, ERIKSSON F, ERIKSSON T, et al. The lawn as a social and cultural phenomenon in Sweden[J]. Urban Forestry & Urban Greening, 2017, 21: 213-223.
|
[2] |
杭楠, 王翔宇, 张蕴薇, 等. 结缕草草坪杂草化学防除策略[J]. 草业科学, 2019, 36(9): 2259-2269.
|
[3] |
HOCKEMEYER K, KOCH P L. Alternative and low‐use‐rate herbicides offer similar levels of weed control to current standards in turfgrass lawns in the upper midwest[J]. Crop, Forage & Turfgrass Management, 2019, 5(1): 1-6.
|
[4] |
MARTELLONI L, FONTANELLI M, CATUREGLI L, et al. Flaming to control weeds in seashore paspalum (Paspalum vaginatum Sw. ) turfgrass[J]. Journal of Agricultural Engineering, 2019, 50(3): 105-112. doi: 10.4081/jae.2019.904
|
[5] |
JIN X, CHE J, CHEN Y. Weed identification using deep learning and image processing in vegetable plantation[J]. IEEE Access, 2021, 9: 10940-10950. doi: 10.1109/ACCESS.2021.3050296
|
[6] |
YU J, SCHUMANN A W, SHARPE S M, et al. Detection of grassy weeds in bermudagrass with deep convolutional neural networks[J]. Weed Science, 2020, 68(5): 1-31. doi: 10.1017/wsc.2020.76
|
[7] |
WATCHAREERUETAI U, MATSUMOTO Y T T, KUDO H, et al. Computer vision based methods for detecting weeds in lawns[J]. Machine Vision & Applications, 2006, 17(5): 287-296.
|
[8] |
PARRA L, MARIN J, YOUSFI S, et al. Edge detection for weed recognition in lawns[J]. Computers and Electronics in Agriculture, 2020, 176(2): 105684.
|
[9] |
TONGBRAM S, SHIMRAY B A, SINGH L S, et al. A novel image segmentation approach using fcm and whale optimization algorithm[J]. Journal of Ambient Intelligence and Humanized Computing, 2021(1): 1-15.
|
[10] |
兰蓉, 林洋. 抑制式非局部空间直觉模糊C−均值图像分割算法[J]. 电子与信息学报, 2019, 41(6): 1472-1479.
|
[11] |
赵泉华, 王春畅, 李玉. 基于混合邻域约束项的改进FCM算法[J]. 控制与决策, 2021, 36(6): 1457-1464.
|
[12] |
张春龙, 张楫, 张俊雄, 等. 近色背景中树上绿色苹果识别方法[J]. 农业机械学报, 2014, 45(10): 277-281. doi: 10.6041/j.issn.1000-1298.2014.10.043
|
[13] |
张田, 田勇, 王子, 等. 基于清晰度评价的自适应阈值图像分割法[J]. 东北大学学报(自然科学版), 2020, 41(9): 1231-1238. doi: 10.12068/j.issn.1005-3026.2020.09.003
|
[14] |
王宁, 殷长春, 高玲琦, 等. 基于曲波变换的航空电磁数据去噪方法研究[J]. 地球物理学报, 2020, 63(12): 4592-4603. doi: 10.6038/cjg2020N0365
|
[15] |
CAI W, CHEN S, ZHANG D. Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation[J]. Pattern Recognition, 2007, 40(3): 825-838. doi: 10.1016/j.patcog.2006.07.011
|
[16] |
毛林, 赵利强, 于明安, 等. 基于图像局部熵的混合水平集模型甲状旁腺分割[J]. 光学学报, 2019, 39(12): 256-264.
|
[17] |
徐金东, 赵甜雨, 冯国政, 等. 基于上下文模糊C均值聚类的图像分割算法[J]. 电子与信息学报, 2021, 43(7): 2079-2086. doi: 10.11999/JEIT200263
|