Citation: |
LAI Mingli, DONG Xiaoquan, XIE Shanyan, et al. Plant adaptability and heavy metals accumulation of |
This study aimed to explore plant adaptability and heavy metals accumulation of different landscape plants and the co-planting system in sludge-amended landscape soil and provide a theoretical basis for the sewage sludge landscape utilization and the selection of landscape plants for heavy metals remediation.
Landscape tree Bischofia javanica and landscape ground cover plant Dianella ensifolia,Syngonium podophyllum, and Schefflera odorata were selected as tested plants. The greenhouse pot experiment contained seven treatments, including four kinds of plant species monoculture, and co-planting of B. javanica with three kinds of landscape ground cover plant, respectively. In addition, substrate without planting was designated as control (CK). The seedlings were harvested after six months. Plant dry biomass, root activity, root antioxidative enzyme activity, root morphology, plant heavy metals accumulation, and the fraction changes of soil heavy metals were analyzed.
Compared with monoculture treatment, the treatment co-planting with S. podophyllumt significantly reduced the dry biomass, root superoxidase dismutase (SOD) activity and root activity of B. javanica. In contrast, the treatment co-planting with S. odorata significantly increased the total root length, total surface area, root volume, specific root length, root peroxidase (POD) and catalase (CAT) activities of B. javanica. The treatment co-planting with B. javanica significantly increased the dry biomass, root total volume, and root CAT activity of S. podophyllum. Compared with monoculture treatment, the treatment co-planting with D. ensifolia increased the Cd accumulation ofB. javanica by 238.73%. The treatment co-planting with S. odorata increased the Cd, Cu, and Ni accumulation of B. javanica by 278.76%, 53.68%, and 71.44%, respectively. The treatment co-planting with B. javanica increased the Cd, Cu, Zn, and Ni accumulation of S. podophyllum by 161.61%, 139.77%, 78.37%, and 65.70%, respectively. Also, the exchangeable and Fe-Mn oxides fractions of Cd were significantly reduced but the residual fractions of Cd, Cu, and Ni were significantly increased by co-planting of B. javanica and S. podophyllum.
Compared with monoculture treatment, co-planting of B. javanica with S. odorata and co-planting of B. javanica with S. podophyllum increased the accumulation of heavy metals in sludge-amended landscape soils.
[1] |
中国环境年鉴编委会. 中国环境年鉴[M]. 北京: 中国环境年鉴社, 2020.
|
[2] |
中华人民共和国住房与城乡建设部. 2020年城乡建设统计年鉴[EB/OL]. [2021-07-28]. http://www.mohurd.gov.cn/gongkai/fdzdgknr/sjfb/index.html.
|
[3] |
EID E M, HUSSAIN A A, TAHER M A, et al. Sewage sludge application enhances the growth of Corchorus olitorius plants and provides a sustainable practice for nutrient recirculation in agricultural soils[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(1): 149-159. doi: 10.1007/s42729-019-00113-z
|
[4] |
SKOWRONSKA M, BIELINSKA E J, SZYMANSKI K, et al. An integrated assessment of the long-term impact of municipal sewage sludge on the chemical and biological properties of soil[J/OL]. Catena, 2020, 189: 104484. https://doi.org/10.1016/j.catena.2020.104484
|
[5] |
LIU H. Achilles heel of environmental risk from recycling of sludge to soil as amendment: A summary in recent ten years (2007—2016)[J]. Waste Management, 2016, 56: 575-583. doi: 10.1016/j.wasman.2016.05.028
|
[6] |
YUE Y, CUI L, LIN Q, et al. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth[J]. Chemosphere, 2017, 173: 551-556. doi: 10.1016/j.chemosphere.2017.01.096
|
[7] |
WU D, CHU S, LAI C, et al. Application rate and plant species affect the ecological safety of sewage sludge as a landscape soil amendment[J]. Urban Forestry & Urban Greening, 2017, 27: 138-147.
|
[8] |
CHU S, JACOBS D F, LIAO D, et al. Effects of landscape plant species and concentration of sewage sludge compost on plant growth, nutrient uptake, and heavy metal removal[J]. Environmental Science and Pollution Research, 2018, 25(35): 35184-35199. doi: 10.1007/s11356-018-3416-x
|
[9] |
AN L, PAN Y, WANG Z, et al. Heavy metal absorption status of five plant species in monoculture and intercropping[J]. Plant and Soil, 2011, 345(1/2): 237-245.
|
[10] |
储双双, 童馨, 王文瑞, 等. 污泥堆肥对黄梁木幼苗生长和元素吸收的影响[J]. 应用生态学报, 2017, 28(5): 1550-1556.
|
[11] |
NISSIM W G, CINCINELLI A, MARTELLINI T, et al. Phytoremediation of sewage sludge contaminated by trace elements and organic compounds[J]. Environmental Research, 2018, 164: 356-366. doi: 10.1016/j.envres.2018.03.009
|
[12] |
CUI T, FANG L, WANG M, et al. Intercropping of gramineous pasture ryegrass (Lolium perenne L. ) and leguminous forage alfalfa (Medicago sativa L. ) increases the resistance of plants to heavy metals[J]. Journal of Chemistry, 2018(7): 1-11.
|
[13] |
LUO K, MA T, LIU H, et al. Efficiency of repeated phytoextraction of cadmium and zinc from an agricultural soil contaminated with sewage sludge[J]. International Journal of Phytoremediation, 2015, 17(6): 575-582. doi: 10.1080/15226514.2014.935286
|
[14] |
XIA H, LIANG D, CHEN F, et al. Effects of mutual intercropping on cadmium accumulation by the accumulator plants Conyza canadensis, Cardamine hirsuta, and Cerastium glomeratum[J]. International Journal of Phytoremediation, 2018, 20(9): 855-861. doi: 10.1080/15226514.2018.1438356
|
[15] |
王婧, 莫其锋, 储双双, 等. 污泥堆肥对园林植物合果芋(Syngonium podophyllum)生长及重金属吸收累积的影响[J]. 生态学杂志, 2018, 37(6): 1752-1758.
|
[16] |
中华人民共和国住房和城乡建设部. 城镇污水处理厂污泥处置园林绿化用泥质: GB/T 23486—2009 [S]. 北京:中国标准出版社, 2009: 1-8.
|
[17] |
GIANNOPOLITIS C N, RIES S K. Superoxide dismutases: I: Occurrence in higher plants[J]. Plant Physiology, 1977, 59(2): 309-314. doi: 10.1104/pp.59.2.309
|
[18] |
AEBI H. Catalase in vitro[J]. Methods in Enzymology, 1984, 105: 121-126.
|
[19] |
AIBIBU N, LIU Y, ZENG G, et al. Cadmium accumulation in Vetiveria zizanioides and its effects on growth, physiological and biochemical characters[J]. Bioresource Technology, 2010, 101(16): 6297-6303. doi: 10.1016/j.biortech.2010.03.028
|
[20] |
TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017
|
[21] |
李鸿博, 蔡伟俊, 谢雨彤, 等. 甘蔗新品系对干旱胁迫的生理响应及抗旱性评价[J]. 华南农业大学学报, 2019, 40(6): 51-58. doi: 10.7671/j.issn.1001-411X.201812016
|
[22] |
ZHANG H, ZHANG L, LI J, et al. Comparative study on the bioaccumulation of lead, cadmium and nickel and their toxic effects on the growth and enzyme defence strategies of a heavy metal accumulator, Hydrilla verticillata (L. f. ) Royle[J]. Environmental Science and Pollution Research, 2020, 27: 9853-9865. doi: 10.1007/s11356-019-06968-0
|
[23] |
KHANNA K, KOHLI S K, SHARMA A, et al. Histochemical and physicochemical studies reveal improved defense in tomato under Cd stress with rhizobacterial supplementation[J]. Plant and Soil, 2020, 446(1): 393-411.
|
[24] |
SRIVASTAVA S, SRIVASTAVA A K, SUPRASANNA P, et al. Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance[J]. Journal of Experimental Botany, 2009, 60(12): 3419-3431. doi: 10.1093/jxb/erp181
|
[25] |
MAHMOOD S, ISHTIAQ S, YASIN G, et al. Dose dependent rhizospheric Ni toxicity evaluation: Membrane stability and antioxidant potential of Vigna species[J]. Chilean Journal of Agricultural Research, 2016, 76(3): 378-384. doi: 10.4067/S0718-58392016000300017
|
[26] |
TAUQEER H M, ALI S, RIZWAN M, et al. Phytoremediation of heavy metals by Alternanthera bettzickiana : Growth and physiological response[J]. Ecotoxicology and Environmental Safety, 2016, 126: 138-146. doi: 10.1016/j.ecoenv.2015.12.031
|
[27] |
DOBRIKOVA A G, APOSTOLOVA E L, HANĆ A, et al. Cadmium toxicity in Salvia sclarea L. : An integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis[J/OL]. Ecotoxicology and Environmental Safety, 2021, 209: 111851. [2021-08-10]. https://doi.org/10.1016/j.ecoenv.2020.111851.
|
[28] |
ENGBERSEN N, BROOKER R W, STEFAN L, et al. Temporal differentiation of resource capture and biomass accumulation as a driver of yield increase in intercropping[J/OL]. Frontiers in Plant Science, 2021, 12: 668803. [2021-08-10]. https://doi.org/10.3389/fpls.2021.668803.
|
[29] |
BROOKER R W. Plant–plant interactions and environmental change[J]. New Phytologist, 2006, 171(2): 271-284. doi: 10.1111/j.1469-8137.2006.01752.x
|
[30] |
BIAN F Y, ZHONG Z K, ZHANG X, et al. Phytoremediation potential of moso bamboo (Phyllostachys pubescens) intercropped with Sedum plumbizincicola in metal-contaminated soil[J]. Environmental Science and Pollution Research, 2017, 24: 27244-27253. doi: 10.1007/s11356-017-0326-2
|
[31] |
梁开明, 傅玲, 章家恩, 等. 水稻/再力花单、间作系统中作物对镉胁迫的叶绿素荧光响应及镉积累特征[J]. 华南农业大学学报, 2014, 35(4): 35-41. doi: 10.7671/j.issn.1001-411X.2014.04.008
|
[32] |
杨国玲, 邓璐璐, 陈康, 等. 低磷条件下接种丛枝菌根真菌对大豆生长和磷吸收的影响[J]. 华南农业大学学报, 2021, 42(4): 42-50. doi: 10.7671/j.issn.1001-411X.202010024
|
[33] |
YU R, XIA S, LIU C, et al. Variations in root morphology among 18 herbaceous species and their relationship with cadmium accumulation[J]. Environmental Science and Pollution Research, 2017, 24(5): 4731-4740. doi: 10.1007/s11356-016-8210-z
|
[34] |
祁世华, 牛燕芬, 王睿芳, 等. 两种入侵植物与三种本地植物根系特征的比较研究[J]. 植物科学学报, 2021, 39(2): 183-192.
|
[35] |
LUO Y, WU Y, QIU J, et al. Suitability of four woody plant species for the phytostabilization of a zinc smelting slag site after 5 years of assisted revegetation[J]. Journal of Soils and Sediments, 2019, 19(2): 702-715. doi: 10.1007/s11368-018-2082-4
|
[36] |
WU D, YU X, CHU S, et al. Alleviation of heavy metal phytotoxicity in sewage sludge by vermicomposting with additive urban plant litter[J]. Science of the Total Environment, 2018, 633: 71-80. doi: 10.1016/j.scitotenv.2018.03.167
|
[37] |
LI Z, WANG J, AN L, et al. Effect of root exudates of intercropping Vicia faba and Arabis alpina on accumulation and sub-cellular distribution of lead and cadmium[J]. International Journal of Phytoremediation, 2019, 21(1): 4-13. doi: 10.1080/15226514.2018.1523867
|
[38] |
MARASTONI L, TAUBER P, PII Y, et al. The potential of two different Avena sativa L. cultivars to alleviate Cu toxicity[J/OL]. Ecotoxicology and Environmental Safety, 2019, 182: 109430. [2021-08-11]. https://doi.org/10.1016/j.ecoenv.2019.109430.
|
[39] |
ZENG P, GUO Z, XIAO X, et al. Effects of tree-herb co-planting on the bacterial community composition and the relationship between specific microorganisms and enzymatic activities in metal (loid)-contaminated soil[J]. Chemosphere, 2019, 220: 237-248. doi: 10.1016/j.chemosphere.2018.12.073
|
[40] |
CAO X, LUO J, WANG X, et al. Responses of soil bacterial community and Cd phytoextraction to a Sedum alfredii-oilseed rape (Brassica napus L. and Brassica juncea L.) intercropping system[J/OL]. Science of the Total Environment, 2020, 723: 138152. [2021-08-11]. https://doi.org/10.1016/j.scitotenv.2020.138152.
|
1. |
邓永涛,尹苗,王聪,陈希文. 猪舍环境影响因子预测模型的研究进展. 家畜生态学报. 2025(02): 122-128 .
![]() | |
2. |
刘艳昌,吴延昌,郭颖轩,李冬阳,张志霞,左现刚,李国厚. 生猪生长环境舒适度实时监测系统设计与实现. 家畜生态学报. 2024(06): 76-81+96 .
![]() | |
3. |
刘丙杰,侯慕馨,冀海燕. 基于支持向量机集成的船舶舱室温湿度预测. 海军工程大学学报. 2024(03): 21-25+32 .
![]() | |
4. |
朱佳明,孙彬,蒲施桦,潘学民,徐顺来,胡彬,齐仁立. 基于多环境因素分析的猪舍温湿度预测模型. 华南农业大学学报. 2024(05): 709-721 .
![]() | |
5. |
杨晓平,李雪寒,聂鹏程. 设施生猪环境调控现状研究和未来展望. 中国农业信息. 2024(02): 83-96 .
![]() | |
6. |
尤德安,邬锡权,陆畅,董钊杰,曾志雄,吕恩利. 数字孪生技术在现代化猪场生产应用的研究进展. 现代农业装备. 2023(04): 2-9+70 .
![]() | |
7. |
翟子鹤,陈小文,高莉平,张天柱. 基于梯度提升算法的温室黄瓜株高生长模拟. 中国农业大学学报. 2022(05): 134-145 .
![]() | |
8. |
杨东轩,吴叶兰,张刚刚,刘硕. 基于边缘计算与深度学习的禽舍监测系统设计. 江苏农业科学. 2022(09): 219-225 .
![]() | |
9. |
陈谦,杨涵,王宝刚,李文生,钱建平. 基于GRU神经网络模型的冷链运输温度时序预测. 农业大数据学报. 2022(01): 82-88 .
![]() | |
10. |
刘炫文,刘仁鑫. 猪舍小气候环境模拟预测技术研究综述. 江西农业学报. 2022(08): 122-126 .
![]() |