Citation: | ZENG Shan, WEN Zhiqiang, LIU Weijian, et al. Optimal design and experiment of air-suction precision hole sowing seed metering device for small-grain vegetable seed[J]. Journal of South China Agricultural University, 2021, 42(6): 52-59. DOI: 10.7671/j.issn.1001-411X.202108017 |
The small-grain seed has the characteristics of small size, light weight and irregular shape. The problems of blockage of seed suction hole, seed damage and poor seeding uniformity often occur in the operation of traditional seed metering device. Therefore, on the basis of seed pelleting technology, an air-suction precision hole sowing seed metering device for small seeds was designed.
The seeding process was simulated by Rocky discrete element simulation software by measuring relevant parameters such as seed size and friction angle. In order to obtain the best performance factor combination of the seed metering device, the quadratic regression rotation orthogonal experiment was carried out, and a multi-objective optimization method was used to optimize the factors affecting the performance of seed metering device.
Through the test of regression coefficients, the primary and secondary order of the factors affecting single grain rate and leak seeding rate of the seed metering device was air pressure and rotation speed of seed metering device. When the rotation speed was constant, with the increase of the negative pressure, the single grain rate increased, and the leak seeding rate decreased; When the negative pressure was constant, with the increase of the rotation speed, the single grain rate decreased, and the leak seeding rate increased. When the negative pressure was greater than −2 800 Pa, the rotation speed of 5−30 r/min had less obvious influence on single grain rate and leak seeding rate of the seed metering device, and the single grain rate was all above 90%, the leak seeding rate was all below 10%.
Through optimization, the optimal working parameter combination is the rotation speed of 15 r/min, the negative pressure of −2 300 Pa, and the positive pressure of 500 Pa. The performance indicators of the seed metering device under these conditions are as following: The average single grain rate qualified index is 96%, the average leak seeding index is 3.37%, and the average replay seeding index is 0.267%, which conforms to the national standard requirements.
[1] |
王琪琛, 张寒波, 孙月星, 等. 广东菜心、油麦菜在蔬菜播种机不同播种密度下的试验研究[J]. 农业开发与装备, 2016(11): 107-108. doi: 10.3969/j.issn.1673-9205.2016.11.086
|
[2] |
PANNING J W, KOCHER M F, SMITH J A, et al. Laboratory and field testing of seed spacing uniformity for sugarbeet planters[J]. Applied Engineering in Agriculture, 2000, 16(1): 7-13. doi: 10.13031/2013.4985
|
[3] |
KARAYEL D, OZMERZI A. Effect of tillage methods on sowing uniformity of maize[J]. Canadian Biosystems Engineering, 2002, 44(2): 23-26.
|
[4] |
KUDRA G, AWREJCEWICZ J. Approximate modeling of resulting dry friction forces and rolling resistance for elliptic contact shape[J]. European Journal of Mechanics A/Solids, 2013(42): 358-375.
|
[5] |
PROVINI P, VAN WASSENBERGH S. Hydrodynamic performance of suction feeding is virtually unaffected by variation in the shape of the posterior region of the pharynx in fish[J]. Royal Society Open Science, 2018, 5(9): 181249. doi: 10.1098/rsos.181249.
|
[6] |
廖庆喜, 李继波, 覃国良. 气力式油菜精量排种器气流场仿真分析[J]. 农业机械学报, 2009, 40(7): 78-82.
|
[7] |
吴福通, 廖庆喜, 田波平. 新型气力式油菜籽精量排种器的设计研究[C]//中国农业工程学会会议论文集. 2006中国科协年会农业分会场论文专集[]. 2006: 2743-2748.
|
[8] |
张猛, 余佳佳, 刘晓辉, 等. 气力集排式油菜精量排种器的排种过程分析[J]. 华中农业大学学报, 2012, 31(1): 116-120.
|
[9] |
李兆东, 李姗姗, 曹秀英, 等. 油菜精量气压式集排器排种性能试验[J]. 农业工程学报, 2015, 31(18): 17-25.
|
[10] |
曹秀龙, 马旭, 李宏伟, 等. 气吸滚筒式油菜穴盘育苗精密排种器设计与试验[J]. 农业工程学报, 2021, 37(2): 51-60. doi: 10.11975/j.issn.1002-6819.2021.2.007
|
[11] |
李杞超. 舀勺式小粒径蔬菜种子精量排种器机理分析与试验研究[D]. 哈尔滨: 东北农业大学, 2020.
|
[12] |
WANG J W, LI Q C, ZHOU W Q, et al. Optimal design and experiment of spoon-disc type rice precision hill-direct-seed metering device[J]. International Agricultural Engineering Journal, 2020, 29(2): 113-126.
|
[13] |
张琛. 种子引发与丸粒化对油菜萌发及生长发育的影响[D]. 武汉: 华中农业大学, 2019.
|
[14] |
常瑛, 魏廷邦, 臧广鹏, 等. 种子丸粒化技术在小粒种子中的研究与应用[J]. 中国种业, 2020(11): 18-21. doi: 10.3969/j.issn.1671-895X.2020.11.004
|
[15] |
陈凯, 韩柏和, 陆岱鹏, 等. 甘蓝种子丸粒化包衣加工工艺及其对品质的影响[J]. 中国农机化学报, 2019, 40(8): 82-88.
|
[16] |
郑述东, 史志明, 曹亮, 等. 小粒种子丸粒化包衣技术的推广应用研究[J]. 农业开发与装备, 2019(11): 56. doi: 10.3969/j.issn.1673-9205.2019.11.039
|
[17] |
WANG L, LIAO Y T, LIAO Q X. Design and experiment of remote control precision planter for Chinese cabbsge vegetable[J]. International Journal of Robotics and Automation, 2018. doi: 10.2316/Journal.206.2018.2.206-5536.
|
[18] |
RYOSUKE M, CHENG J, TAKETERU T, et al. Absence of suction feeding ichthyosaurs and its implications for triassic mesopelagic paleoecology[J]. PLoS One, 2018, 8(12): e66075.
|
[19] |
李金凤. 小粒径蔬菜种子气吸式精密排种器的设计与试验研究[D]. 泰安: 山东农业大学, 2019.
|
[20] |
Г К 克列因. 散粒体结构力学[M]. 陈万佳, 译. 北京: 中国铁道出版社, 1983: 42.
|
[21] |
马云海. 农业物料学[M]. 北京: 化学工业出版社, 2015: 92-96.
|
[22] |
曾智伟, 马旭, 曹秀龙, 等. 离散元法在农业工程研究中的应用现状和展望[J]. 农业机械学报, 2021, 52(4): 1-20. doi: 10.6041/j.issn.1000-1298.2021.04.001
|
[23] |
全国农业机械标准化技术委员会. 单粒(精密)播种机试验方法: GB/T 6973—2005[S]. 北京: 中国国家标准化管理委员会, 2005.
|
1. |
任德港,王东伟,李墨贤,李绪,马振家,董彤彤,常学良,马世宽,于华丽. 苜蓿小区育种气吸式排种器设计与试验. 农机化研究. 2025(01): 39-45 .
![]() | |
2. |
刘海,杜铮,郭翔,李华,马翔远,廖宜涛. 蔬菜种子精量直播技术与装备研究进展. 华中农业大学学报. 2025(01): 225-238 .
![]() | |
3. |
杨文彩,田梓园,潘吴建,赵静,张海东,李贵荣. 蔬菜穴盘育苗播种机清种装置的设计与试验. 华南农业大学学报. 2024(01): 116-126 .
![]() | |
4. |
臧英,黄子顺,秦伟,何思禹,钱诚,姜有聪,陶婉琰,张美林,王在满. 气吸式杂交稻单粒排种器研制. 农业工程学报. 2024(06): 181-191 .
![]() | |
5. |
贾桃,谭蓉,赵倩,王利春,郭文忠. 我国设施生菜无土生产装备研究现状及展望. 中国农机化学报. 2022(02): 67-74 .
![]() | |
6. |
梅玉茹,谢方平,王修善,李旭,刘大为. 番茄气吸滚筒式排种器的优化设计与试验. 湖南农业大学学报(自然科学版). 2022(06): 730-736 .
![]() |