• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
REN Jiahui, WU Tao, LIU Qingting, et al. Discrete element simulation modeling method and parameter calibration of sugarcane segment[J]. Journal of South China Agricultural University, 2022, 43(3): 124-132. DOI: 10.7671/j.issn.1001-411X.202108015
Citation: REN Jiahui, WU Tao, LIU Qingting, et al. Discrete element simulation modeling method and parameter calibration of sugarcane segment[J]. Journal of South China Agricultural University, 2022, 43(3): 124-132. DOI: 10.7671/j.issn.1001-411X.202108015

Discrete element simulation modeling method and parameter calibration of sugarcane segment

More Information
  • Received Date: August 11, 2021
  • Available Online: May 17, 2023
  • Objective 

    The construction method of discrete element model and the setting of simulation parameters of sugarcane segment as stalk material with large length and diameter ratio are not clear, the accuracy of the model has a great influence on the dynamic response characteristics between particles, and the accuracies of the simulation parameters need to be improved by parameter calibration.

    Method 

    Taking the physical repose angle of sugarcane segment as the response value, the discrete element parameters were optimized and calibrated by simulation test method. Firstly, the basic physical parameters of sugarcane segment were measured by physical test, and the sugarcane segment simulation model was constructed based on the multi-sphere polymerization model and XML method. Then, the Plackett-Burman test was used to screen the significance of eight initial parameters in the discrete element simulation of sugarcane segment, and the optimal value ranges of significant parameters were determined by the steepest ascent search test. Further, the second-order regression equation between the significant parameters and repose angle was established based on the Box-Behnken test, and taking the physical repose angle of 42.70° as the target value, the regression equation was optimized.

    Result 

    The significance screening test showed that the Poisson’s ratio of sugarcane segment, the static and dynamic friction coefficients between two sugarcane segments had significant influence on the simulated repose angle. The optimal parameter combination was as follows: The Poisson’s ratio of sugarcane segment was 0.35, the static and dynamic friction coefficients between sugarcane segments were 0.53 and 0.04 respectively. The simulation test results of the optimal parameter combination showed that there was no significant difference between the simulated repose angle and the physical repose angle, and the relative error between them was 0.99%, which further verifies the reliability of sugarcane segment parameters calibrated by discrete element method.

    Conclusion 

    The sugarcane segment discrete element model and the optimal simulation parameters can be used in the sugarcane segment discrete element simulation test, and can provide a reference for calibration of the discrete element parameter of stalk agricultural materials with large length and diameter ratio.

  • [1]
    樊秋菊, 黄清玲, 吴合槟, 等. 国内外甘蔗收获机械化发展概况与前景[J]. 甘蔗糖业, 2020, 49(6): 1-11. doi: 10.3969/j.issn.1005-9695.2020.06.001
    [2]
    刘庆庭, 刘晓雪, 武涛, 等. 我国甘蔗机械化“十四五”规划与甘蔗产业可持续发展[J]. 现代农业装备, 2020, 41(6): 2-9. doi: 10.3969/j.issn.1673-2154.2020.06.001
    [3]
    邢浩男, 马少春, 王风磊, 等. 切段式甘蔗收割机排杂风机结构优化与试验[J]. 农业工程学报, 2020, 36(20): 67-75. doi: 10.11975/j.issn.1002-6819.2020.20.009
    [4]
    HORABIK J, MOLENDA M. Parameters and contact models for DEM simulations of agricultural granular materials: A review[J]. Biosystems Engineering, 2016, 147(7): 206-225.
    [5]
    OINONEN A, MARQUIS G. A constitutive model for interface problems with frictional contact and cohesion[J]. European Journal of Mechanics - A/Solids, 2015, 49(1): 205-213.
    [6]
    曾智伟, 马旭, 曹秀龙, 等. 离散元法在农业工程研究中的应用现状和展望[J]. 农业机械学报, 2021, 52(4): 1-20. doi: 10.6041/j.issn.1000-1298.2021.04.001
    [7]
    刘凡一, 张舰, 李博, 等. 基于堆积试验的小麦离散元参数分析及标定[J]. 农业工程学报, 2016, 32(12): 247-253. doi: 10.11975/j.issn.1002-6819.2016.12.035
    [8]
    侯占峰, 戴念祖, 陈智, 等. 冰草种子物性参数测定与离散元仿真参数标定[J]. 农业工程学报, 2020, 36(24): 46-54. doi: 10.11975/j.issn.1002-6819.2020.24.006
    [9]
    吴孟宸, 丛锦玲, 闫琴, 等. 花生种子颗粒离散元仿真参数标定与试验[J]. 农业工程学报, 2020, 36(23): 30-38. doi: 10.11975/j.issn.1002-6819.2020.23.004
    [10]
    武涛, 黄伟凤, 陈学深, 等. 考虑颗粒间黏结力的黏性土壤离散元模型参数标定[J]. 华南农业大学学报, 2017, 38(3): 93-98. doi: 10.7671/j.issn.1001-411X.2017.03.015
    [11]
    王黎明, 范盛远, 程红胜, 等. 基于EDEM的猪粪接触参数标定[J]. 农业工程学报, 2020, 36(15): 95-102. doi: 10.11975/j.issn.1002-6819.2020.15.012
    [12]
    刘文政, 何进, 李洪文, 等. 基于离散元的微型马铃薯仿真参数标定[J]. 农业机械学报, 2018, 49(5): 125-135. doi: 10.6041/j.issn.1000-1298.2018.05.014
    [13]
    张荣芳, 焦伟, 周纪磊, 等. 不同填充颗粒半径水稻种子离散元模型参数标定[J]. 农业机械学报, 2020, 51(S1): 227-235. doi: 10.6041/j.issn.1000-1298.2020.S1.026
    [14]
    鹿芳媛, 马旭, 谭穗妍, 等. 水稻芽种离散元主要接触参数仿真标定与试验[J]. 农业机械学报, 2018, 49(2): 93-99. doi: 10.6041/j.issn.1000-1298.2018.02.012
    [15]
    张涛, 刘飞, 赵满全, 等. 大豆种子与排种器接触物理参数的测定与离散元仿真标定[J]. 中国农业大学学报, 2017, 22(9): 86-92. doi: 10.11841/j.issn.1007-4333.2017.09.11
    [16]
    王云霞, 梁志杰, 张东兴, 等. 基于离散元的玉米种子颗粒模型种间接触参数标定[J]. 农业工程学报, 2016, 32(22): 36-42. doi: 10.11975/j.issn.1002-6819.2016.22.005
    [17]
    王美美, 王万章, 杨立权, 等. 基于响应面法的玉米籽粒离散元参数标定[J]. 华南农业大学学报, 2018, 39(3): 111-117. doi: 10.7671/j.issn.1001-411X.2018.03.017
    [18]
    马帅, 徐丽明, 袁全春, 等. 葡萄藤防寒土与清土部件相互作用的离散元仿真参数标定[J]. 农业工程学报, 2020, 36(1): 40-49. doi: 10.11975/j.issn.1002-6819.2020.01.005
    [19]
    VAN ZEEBROECK M, TIJSKENS E, DINTWA E, et al. The discrete element method (DEM) to simulate fruit impact damage during transport and handling: Model building and validation of DEM to predict bruise damage of apples[J]. Postharvest Biology and Technology, 2006, 41(1): 85-91. doi: 10.1016/j.postharvbio.2006.02.007
    [20]
    SCHEFFLER O C, COETZEE C J, OPARA U L. A discrete element model (DEM) for predicting apple damage during handling[J]. Biosystems Engineering, 2018, 172: 29-48. doi: 10.1016/j.biosystemseng.2018.05.015
    [21]
    于庆旭, 刘燕, 陈小兵, 等. 基于离散元的三七种子仿真参数标定与试验[J]. 农业机械学报, 2020, 51(2): 123-132. doi: 10.6041/j.issn.1000-1298.2020.02.014
    [22]
    FAVIER J F, ABBASPOUR-FARD M H, KREMMER M, et al. Shape representation of axi-symmetrical, non-spherical particles in discrete element simulation using multi-element model particles[J]. Engineering Computations, 1999, 16(4): 467-480. doi: 10.1108/02644409910271894
    [23]
    ABBASPOUR-FARD M H. Theoretical validation of a multi-sphere discrete element model suitable for biomaterials handling simulation[J]. Biosystems Engineering, 2004, 88(2): 153-161. doi: 10.1016/j.biosystemseng.2004.03.010
    [24]
    KRUGGEL-EMDEN H, RICKELT S, WIRTZ S, et al. A study on the validity of the multi-sphere discrete element method[J]. Powder Technology, 2008, 188(2): 153-165. doi: 10.1016/j.powtec.2008.04.037
    [25]
    SALOT C, GOTTELAND P, VILLARD P. Influence of relative density on granular materials behavior: DEM simulations of triaxial tests[J]. Granular Matter, 2009, 11(4): 221-236. doi: 10.1007/s10035-009-0138-2
    [26]
    KOZHAR S, DOSTA M, ANTONYUK S, et al. DEM simulations of amorphous irregular shaped micrometer-sized titania agglomerates at compression[J]. Advanced Powder Technology, 2015, 26(3): 767-777. doi: 10.1016/j.apt.2015.05.005
    [27]
    韩丹丹, 张东兴, 杨丽, 等. 内充气吹式玉米排种器工作性能EDEM-CFD模拟与试验[J]. 农业工程学报, 2017, 33(13): 23-31. doi: 10.11975/j.issn.1002-6819.2017.13.004
    [28]
    原建博, 李骅, 吴崇友, 等. 基于离散单元法的水稻籽粒快速颗粒建模研究[J]. 南京农业大学学报, 2018, 41(6): 1151-1158. doi: 10.7685/jnau.201801004
    [29]
    王美美, 王万章, 杨立权, 等. 基于EDEM的玉米子粒建模方法的研究[J]. 河南农业大学学报, 2018, 52(1): 80-84.
    [30]
    张涛, 刘飞, 赵满全, 等. 玉米秸秆接触物理参数测定与离散元仿真标定[J]. 中国农业大学学报, 2018, 23(4): 120-127. doi: 10.11841/j.issn.1007-4333.2018.04.15
    [31]
    夏蕊, 杨兆建, 李博, 等. 基于离散元法的煤散料堆积角试验研究[J]. 中国粉体技术, 2018, 24(6): 36-42.
    [32]
    韩燕龙, 贾富国, 唐玉荣, 等. 颗粒滚动摩擦系数对堆积特性的影响[J]. 物理学报, 2014, 63(17): 173-179.
    [33]
    罗菊川, 文晟, 李涵光, 等. 甘蔗尾茎泊松比的试验分析[J]. 华南农业大学学报, 2017, 38(6): 118-124. doi: 10.7671/j.issn.1001-411X.2017.06.018
    [34]
    罗菊川, 区颖刚, 刘庆庭. 甘蔗尾茎力学特性试验[J]. 农机化研究, 2016, 38(7): 220-223. doi: 10.3969/j.issn.1003-188X.2016.07.045
    [35]
    刘庆庭, 区颖刚, 卿上乐, 等. 甘蔗茎秆在扭转、压缩、拉伸荷载下的破坏试验[J]. 农业工程学报, 2006, 22(6): 201-204. doi: 10.3321/j.issn:1002-6819.2006.06.043
    [36]
    刘庆庭, 区颖刚, 袁纳新. 甘蔗茎在弯曲荷载下的破坏[J]. 农业工程学报, 2004, 20(3): 6-9. doi: 10.3321/j.issn:1002-6819.2004.03.002
    [37]
    王美美. 单芽段甘蔗种植机排种机理与种植均匀性研究[D]. 广州: 华南农业大学, 2014.
    [38]
    温翔, 杨望, 郭无极, 等. 切段式甘蔗收割机排杂离散元仿真参数标定及验证[J]. 中国农机化学报, 2020, 41(1): 12-18.
    [39]
    黄積佰. 切段式甘蔗收获机除杂系统的流固耦合仿真与优化[D]. 广州: 华南农业大学, 2020.

Catalog

    Article views (210) PDF downloads (358) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return