• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
CHEN Sijing, DU Ailin, LI Fusheng. Effects of different drip fertigation treatments on organic carbon fraction and enzyme activity in potato-planting soil[J]. Journal of South China Agricultural University, 2022, 43(3): 34-41. DOI: 10.7671/j.issn.1001-411X.202107044
Citation: CHEN Sijing, DU Ailin, LI Fusheng. Effects of different drip fertigation treatments on organic carbon fraction and enzyme activity in potato-planting soil[J]. Journal of South China Agricultural University, 2022, 43(3): 34-41. DOI: 10.7671/j.issn.1001-411X.202107044

Effects of different drip fertigation treatments on organic carbon fraction and enzyme activity in potato-planting soil

More Information
  • Received Date: July 27, 2021
  • Available Online: May 17, 2023
  • Objective 

    The aim was to obtain a water and fertilizer management mode that regulates potato-planting soil organic carbon storage, and reveal the influence of soil enzyme activity on soil organic carbon fraction and carbon pool management index (CPMI).

    Method 

    Field experiment was carried out in Nanning under the rain-shelter condition with two drip irrigation levels (high irrigation amount: Soil water content was maintained at 60%–70%, 70%–80%, 75%–85% and 50%–60% of field capacity at the seedling, tuber formation, tuber expansion and starch accumulation stages, respectively; Low irrigation amount: Soil water content was maintained at 50%–60%, 60%–70%, 70%–80% and 40%–50% of field capacity at the seedling, tuber formation, tuber expansion and starch accumulation stages, respectively) and three drip fertigation ratios (NK100-0: All N,K fertilizer were applied to soil as base fertilizer; NK70-30: 70% N,K fertilizer were applied to soil as base fertilizer and 30% as topdressing with drip fertigation; NK50-50: 50% N,K fertilizer were applied to soil as base fertilizer and 50% as topdressing with drip fertigation). The contents of total organic carbon (TOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC) and labile organic carbon (LOC) and the activities of sucrase, cellulase and catalase in the soils were measured after harvesting the potato. Then CPMI was calculated and the relationships of soil organic carbon fraction and CPMI with soil enzyme activities were analyzed.

    Result 

    Drip irrigation amount affected organic carbon contents and components in the soils significantly. Under the same fertigation ratio, high irrigation amount had higher organic carbon contents and components, CPMI and sucrase activity in the soils than those of low irrigation amount. Under the high irrigation amount condition, NK50-50 increased TOC content by 15.2% and 7.1% respectively compared with NK100-0 and NK70-30, and NK50-50 increased LOC content by 25.0% compared with NK100-0. Moreover, NK50-50 of high irrigation amount treatment had significant higher contents of TOC and LOC than those of other treatments. Under the same drip irrigation amount, the effect of drip fertigation ratio on the activities of three enzymes was not significant. Among all treatments, NK50-50 of high irrigation amount treatment had the highest sucrase activity. Compared with NK100-0, NK50-50 increased soil CPI and CPMI by 15.1% and 25.8% respectively under the high irrigation amount condition, and NK50-50 increased carbon pool index (CPI) and CPMI by 12.6% and 8.4% respectively under the low irrigation amount condition. Among all treatments, NK50-50 of high irrigation amount treatment had higher CPI and CPMI. In addition, soil TOC, DOC and MBC were extremely significantly or significantly correlated with the sucrase activity (with correlation coefficients of 0.61, 0.48 and 0.46, respectively).

    Conclusion 

    NK50-50 of high irrigation amount treatment increases the contents of organic carbon and its components and sucrase activity in soil, and can be used as the water and fertilizer management mode regulating potato-planting soil organic carbon storage. Soil sucrase activity affects the contents of TOC, DOC and MBC.

  • [1]
    冯志文, 万书勤, 康跃虎, 等. 滴灌施肥条件下减量施肥对马铃薯田土壤养分积累及产量的影响[J]. 节水灌溉, 2019(8): 28-33. doi: 10.3969/j.issn.1007-4929.2019.08.006
    [2]
    宇万太, 柳敏, 赵鑫, 等. 不同有机物料及其配施对潮棕壤轻组有机碳的动态影响[J]. 土壤通报, 2008, 39(6): 1307-1310. doi: 10.3321/j.issn:0564-3945.2008.06.016
    [3]
    沈舒雨, 王芳, 南雄雄, 等. 氮磷养分配施对土壤碳氮特征及叶用枸杞生长的影响[J]. 青海环境, 2020, 30(1): 26-33. doi: 10.3969/j.issn.1007-2454.2020.01.007
    [4]
    邓少虹, 林明月, 李伏生, 等. 施肥对喀斯特地区植草土壤碳库管理指数及酶活性的影响[J]. 草业学报, 2014, 23(4): 262-268. doi: 10.11686/cyxb20140432
    [5]
    齐玉春, 郭树芳, 董云社, 等. 灌溉对农田温室效应贡献及土壤碳储量影响研究进展[J]. 中国农业科学, 2014, 47(9): 1764-1773. doi: 10.3864/j.issn.0578-1752.2014.09.011
    [6]
    SINGH A, GULATI I J, CHOPRA R, et al. Effect of drip-fertigation with organic manures on soil properties and tomato (Lycopersicon esculentum Mill. ) yield under arid condition[J]. Annals of Biology, 2014, 30(2): 345-349.
    [7]
    缑倩倩, 王国华, 屈建军. 农田土壤有机碳库研究述评[J]. 中国农学通报, 2017, 33(33): 107-114. doi: 10.11924/j.issn.1000-6850.casb16100003
    [8]
    俞华林, 张恩和, 王琦, 等. 灌溉和施氮对免耕留茬春小麦农田土壤有机碳、全氮和籽粒产量的影响[J]. 草业学报, 2013, 22(3): 227-233. doi: 10.11686/cyxb20130330
    [9]
    韩琳, 张玉龙, 金烁, 等. 灌溉模式对保护地土壤可溶性有机碳与微生物量碳的影响[J]. 中国农业科学, 2010, 43(8): 1625-1633. doi: 10.3864/j.issn.0578-1752.2010.08.011
    [10]
    刘瑞, 王星辰, 束良佐, 等. 滴灌施肥条件下氮去向及其对土壤环境影响的研究进展[J]. 安徽农业科学, 2018, 46(15): 24-27. doi: 10.3969/j.issn.0517-6611.2018.15.008
    [11]
    马瑞萍, 安韶山, 党廷辉, 等. 黄土高原不同植物群落土壤团聚体中有机碳和酶活性研究[J]. 土壤学报, 2014, 51(1): 104-113. doi: 10.11766/trxb201302050071
    [12]
    鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [13]
    史万恩. 滴灌条件下脱毒马铃薯灌溉制度试验研究[J]. 水资源与水工程学报, 2017, 28(5): 255-260. doi: 10.11705/j.issn.1672-643X.2017.05.43
    [14]
    赵鸿, 任丽雯, 赵福年, 等. 马铃薯对土壤水分胁迫响应的研究进展[J]. 干旱气象, 2018, 36(4): 537-543.
    [15]
    关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.
    [16]
    杜爱林, 傅丰贝, 李伏生. 赤红壤碳库管理的滴灌施氮模式研究[J]. 华南农业大学学报, 2019, 40(2): 14-20. doi: 10.7671/j.issn.1001-411X.201805014
    [17]
    BICHARANLOO B, SHIRVAN M B, KEITEL C, et al. Rhizodeposition mediates the effect of nitrogen and phosphorous availability on microbial carbon use efficiency and turnover rate [J/OL]. Soil Biology and Biochemistry, 2020, 142: 107705. [2021-07-15] . https://doi.org/10.1016/j.soilbio.2020.107705.
    [18]
    王振龙, 包蕾, 葛新伟, 等. 有机滴灌肥对酿酒葡萄园土壤微生物量碳、氮及酶活性的影响[J]. 中国土壤与肥料, 2019(2): 61-67. doi: 10.11838/sfsc.1673-6257.18229
    [19]
    YOON T K, NOH N J, HAN S, et al. Soil moisture effects on leaf litter decomposition and soil carbon dioxide efflux in wetland and upland forests[J]. Soil Science Society of America Journal, 2014, 78(5): 1804-1816. doi: 10.2136/sssaj2014.03.0094
    [20]
    唐海明, 程凯凯, 肖小平, 等. 不同冬季覆盖作物对双季稻田土壤有机碳的影响[J]. 应用生态学报, 2017, 28(2): 465-473.
    [21]
    钱虹宇, 周宏鑫, 罗原骏, 等. 土壤活性有机碳及碳库管理指数对高寒湿地退化的响应[J]. 生态学杂志, 2020, 39(7): 2273-2282.
    [22]
    滕秋梅, 沈育伊, 徐广平, 等. 桂北喀斯特山区不同植被类型土壤碳库管理指数的变化特征[J]. 生态学杂志, 2020, 39(2): 422-433.
    [23]
    张鹏, 钟川, 周泉, 等. 不同冬种模式对稻田土壤碳库管理指数的影响[J]. 中国生态农业学报, 2019, 27(8): 1163-1171.
    [24]
    薛萐, 刘国彬, 潘彦平, 等. 黄土丘陵区人工刺槐林土壤活性有机碳与碳库管理指数演变[J]. 中国农业科学, 2009, 42(4): 1458-1464. doi: 10.3864/j.issn.0578-1752.2009.04.042
    [25]
    田幼华, 吕光辉, 杨晓东, 等. 水盐胁迫对干旱区植物根际土壤酶活性的影响[J]. 干旱区资源与环境, 2012, 26(3): 158-163.
    [26]
    高丽敏, 苏晶, 田倩, 等. 施氮对不同水分条件下紫花苜蓿氮素吸收及根系固氮酶活性的影响[J]. 草业学报, 2020, 29(3): 130-136. doi: 10.11686/cyxb2019268
    [27]
    万忠梅, 宋长春, 郭跃东, 等. 毛苔草湿地土壤酶活性及活性有机碳组分对水分梯度的响应[J]. 生态学报, 2008, 28(12): 5980-5986. doi: 10.3321/j.issn:1000-0933.2008.12.025
    [28]
    杨雪艳, 蒋代华, 杨钙仁, 等. 甘蔗水肥一体化种植对土壤微生物量碳氮和酶活性的影响[J]. 土壤通报, 2018, 49(4): 889-896.
    [29]
    崔东, 邓霞, 刘影, 等. 镰叶锦鸡儿湿地土壤酶活性分布特征及其与活性有机碳表征指数的关系[J]. 干旱地区农业研究, 2017, 35(5): 195-201. doi: 10.7606/j.issn.1000-7601.2017.05.29
    [30]
    曲成闯, 陈效民, 张志龙, 等. 施用生物有机肥对黄瓜连作土壤有机碳库和酶活性的持续影响[J]. 应用生态学报, 2019, 30(9): 3147-3154.
    [31]
    张英英. 不同耕作措施下旱作农田土壤活性有机碳组分与酶活性关系研究[D]. 兰州: 甘肃农业大学, 2016.
  • Cited by

    Periodical cited type(10)

    1. 何玉,周晨莉,张恒嘉. 水氮互作对土壤有机碳、微生物及酶活性的影响研究述评. 水利规划与设计. 2025(03): 97-100+106 .
    2. 秦钧,骆洪义,贾国燏,褚旭,宋久洋,胡华林. 聚乙烯微塑料对土壤的影响及综合生物标志物响应指数. 山东化工. 2025(03): 12-18 .
    3. 赵俊波,胡兵辉. 水肥调控对茶树土壤酶及土壤养分的影响. 山西农业大学学报(自然科学版). 2024(02): 130-140 .
    4. 梁榕,何娇,孙飞虎,张瑞芳,王鑫鑫. 聚乙烯微塑料对土壤养分和酶活性的影响. 环境科学. 2024(06): 3679-3687 .
    5. 王颜玉,王文定,郑梦瑶,欧行奇,郑会芳. 施氮和灌溉处理对麦田土壤有机碳组分及酶活性的影响. 环境工程技术学报. 2024(05): 1419-1426 .
    6. 朱琪,史中兴,寇燕燕,刘斌,陈亮,栾倩倩. 原位工程化根治技术和增施生物有机肥对盐碱地土壤酶活性及甜瓜产量、品质的影响. 中国瓜菜. 2023(03): 77-84 .
    7. 赵朔. 水肥一体化模式对马铃薯干物质积累及水分利用效率的影响. 基层农技推广. 2023(05): 34-37 .
    8. 郝海波,许文霞,侯振安. 水氮耦合对滴灌棉田土壤有机碳组分及酶活性的影响. 植物营养与肥料学报. 2023(05): 860-875 .
    9. 吕江艳,龙鹏宇,罗维钢,李伏生,农梦玲. 甘蔗节水高产和蔗田氧化亚氮减排的滴灌施肥模式. 节水灌溉. 2023(12): 1-8 .
    10. 关追追,卢奇锋,陈动,邱权,苏艳,李吉跃,何茜. 施肥方式对幼龄楸树非结构性碳器官分配和生长季动态的影响. 西北植物学报. 2022(08): 1355-1362 .

    Other cited types(9)

Catalog

    Article views (239) PDF downloads (331) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return