Citation: | LI Jinxiu, GUO Yongzhi, CUI Rong, et al. Influence of drought stress on tassel development characteristics and yield of maize[J]. Journal of South China Agricultural University, 2022, 43(3): 26-33. DOI: 10.7671/j.issn.1001-411X.202107025 |
To explore the effects of drought stress on maize tassel development characteristics and yield, and provide a theoretical basis for drought resistance and yield protection of maize planting in northeast China.
In the pot experiment, original soil treatment and adding soil conditioner treatment were set up. Different drought stress degrees of normal water supply (CK), light drought stress, moderate drought stress, and severe drought stress were conducted from the big trumpet stage to silking stage of maize, to study the effects of different drought stress degrees on maize anthesis-silking interval, tassel morphological and physiological characteristics and yield.
Drought stress delayed the silking time of the female inflorscence of maize causing the tasseling and, silking of the maize to be asynchronous, most seriously under severe drought stress. Compared with CK, the anthesis-silking interval in the original soil and adding soil conditioner treatments was extended by 6.33 and 4.67 d, respectively. Different drought stress degrees decreased the maize size and spindle length. Light drought stress was conducive to the accumulation of dry matter in the maize tassels, and compared with CK, the tassel dry matter in the original soil treatment and the adding soil conditioner treatment increased by 5.18% and 14.87%, respectively. Drought stress prompted the tassels to secrete antioxidant system enzymes and osmotic adjustment substances to resist adversity damage. However, under severe drought stress, too much malondialdehyde (MDA) and harmful substances were produced in the tassel, which caused the activity of the antioxidant system enzyme to decrease. Drought stress caused a serious decline in maize yield. Under severe drought stress, the maize yield in the original soil treatment decreased by 62.39% compared with CK, and the yield in the adding soil conditioner treatment decreased by 57.77%.
Drought stress seriously affects the development and yield of maize tassels, especially under severe drought stress, which causes irreversible damage to the tassels. The application of soil conditioner can improve the stress resistance of maize tassels to a certain extent, thereby ensuring the normal growth and development of maize tassels and yield.
[1] |
杨若子. 东北玉米主要农业气象灾害的时空特征与风险综合评估[D]. 北京: 中国气象科学研究院, 2015.
|
[2] |
倪深海, 顾颖, 彭岳津, 等. 近七十年中国干旱灾害时空格局及演变[J]. 自然灾害学报, 2019, 28(6): 176-181.
|
[3] |
张淑杰, 张玉书, 纪瑞鹏, 等. 东北地区玉米干旱时空特征分析[J]. 干旱地区农业研究, 2011, 29(1): 231-236.
|
[4] |
LI W, HAO Z, PANG J, et al. Effect of water-deficit on tassel development in maize[J]. Gene, 2019, 681: 86-92. doi: 10.1016/j.gene.2018.09.018
|
[5] |
贾双杰, 李红伟, 江艳平, 等. 干旱胁迫对玉米叶片光合特性和穗发育特征的影响[J]. 生态学报, 2020, 40(3): 854-863.
|
[6] |
MAAZOU A-R S, TU J, QIU J, et al. Breeding for drought tolerance in maize (Zea mays L. )[J]. American Journal of Plant Sciences, 2016, 7(14): 1858-1870
|
[7] |
宋凤斌, 戴俊英. 玉米对干旱胁迫的反应和适应性Ⅱ: 玉米雌穗和雄穗生长发育对干旱胁迫的反应[J]. 吉林农业大学学报, 2005(1): 1-5. doi: 10.3969/j.issn.1000-5684.2005.01.001
|
[8] |
FATHI A, TARI D B. Effect of drought stress and its mechanism in plants[J]. International Journal of Life Sciences, 2016, 10(1). doi: 10.3126/ijls.vloil.14509.
|
[9] |
杨娟, 姜阳明, 周芳, 等. PEG模拟干旱胁迫对不同抗旱性玉米品种苗期形态与生理特性的影响[J]. 作物杂志, 2021(1): 82-89.
|
[10] |
LIU C, LIU Y, GUO K, et al. Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China[J]. Environmental and Experimental Botany, 2011, 71(2): 174-183. doi: 10.1016/j.envexpbot.2010.11.012
|
[11] |
ZAHER-ARA T, BOROOMAND N, SADAT-HOSSEINI M. Physiological and morphological response to drought stress in seedlings of ten citrus[J]. Trees, 2016, 30(3): 985-993. doi: 10.1007/s00468-016-1372-y
|
[12] |
杨晓龙. 不同生育期干旱胁迫对水稻产量品质影响的生理机制研究[D]. 武汉: 华中农业大学, 2019.
|
[13] |
张凤路, KIRUBI D. 玉米雌雄穗开花间隔与产量关系研究[J]. 作物学报, 2002(1): 76-78. doi: 10.3321/j.issn:0496-3490.2002.01.015
|
[14] |
郭江, 石中泉, 张凤路, 等. 玉米的雌雄穗开花间隔对产量的影响及其潜在原因研究[J]. 玉米科学, 2004(S2): 20-22.
|
[15] |
郭艳阳, 刘佳, 朱亚利, 等. 玉米叶片光合和抗氧化酶活性对干旱胁迫的响应[J]. 植物生理学报, 2018, 54(12): 1839-1846.
|
[16] |
张永福, 黄鹤平, 银立新, 等. 冷(热)激对干旱胁迫下玉米活性氧清除及膜脂过氧化的调控机制[J]. 江苏农业科学, 2015, 43(5): 56-60.
|
[17] |
邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2007.
|
[18] |
ARUMINGTYAS E L, WIDORETNO W, INDRIYANI S. Somaclonal variations of soybeans (Glycine Max. L. Merr) stimulated by drought stress based on random amplified polymorphic DNAs (RAPDs)[J]. American Journal of Molecular Biology, 2012, 2(1): 85-91. doi: 10.4236/ajmb.2012.21009
|
[19] |
贾波, 谢庆春, 蒋学祥, 等. 玉米雄穗主要性状研究进展[J]. 安徽农业科学, 2016, 44(32): 24-26. doi: 10.3969/j.issn.0517-6611.2016.32.008
|
[20] |
王艺煊, 王瑞莲, 李成, 等. 玉米自交系雌雄穗开花间隔与产量及抗旱性的相关性[J]. 作物研究, 2020, 34(5): 427-430.
|
[21] |
张翠梅. 不同抗旱性紫花苜蓿响应干旱的生理及分子机制研究[D]. 兰州: 甘肃农业大学, 2019.
|
[22] |
SONG Y, LI J, LIU M, et al. Nitrogen increases drought tolerance in maize seedlings[J]. Functional Plant Biology, 2019, 46(4): 350-359. doi: 10.1071/FP18186
|
[23] |
刘佳. 不同抗旱性玉米品种响应干旱及复水的光合生理机制[D]. 杨凌: 西北农林科技大学, 2019.
|
[24] |
周客, 王利书, 程东娟, 等. 保水剂对土壤水分运移和水吸力变化的影响[J]. 节水灌溉, 2021(2): 52-57.
|
[25] |
田丽, 苏改艳, 高平安, 等. 不同土壤改良剂对玉米幼苗生理生长特性的影响[J]. 陕西农业科学, 2021, 67(3): 20-23. doi: 10.3969/j.issn.0488-5368.2021.03.006
|
[26] |
张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响[J]. 中国农业科学, 2018, 51(5): 868-882. doi: 10.3864/j.issn.0578-1752.2018.05.006
|
[27] |
BLUM A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production[J]. Plant Cell and Environment, 2017, 40(1): 4-10. doi: 10.1111/pce.12800
|
[28] |
贾斯淳, 王娜, 郝兴宇, 等. 不同干旱胁迫处理对大豆品种生长及逆境生理的影响[J]. 华北农学报, 2019, 34(5): 137-144. doi: 10.7668/hbnxb.201751770
|
[29] |
XU H, LU Y, XIE Z, et al. Changes in nitrogen metabolism and antioxidant enzyme activities of maize tassel in black soils region of northeast China[J]. Frontiers in Plant Science, 2014, 5: 515.
|
[30] |
EFEOĞLU B, EKMEKÇI Y, ÇIÇEK N. Physiological responses of three maize cultivars to drought stress and recovery[J]. South African Journal of Botany, 2009, 75(1): 34-42. doi: 10.1016/j.sajb.2008.06.005
|