Citation: | LI Qingrong, XING Dongxu, XIAO Yang, et al. Rhizosphere colonization of Bacillus subtilis biocontrol strain SEM-9 and the effect on microbial diversity in rhizosphere soil[J]. Journal of South China Agricultural University, 2022, 43(4): 82-88. DOI: 10.7671/j.issn.1001-411X.202107008 |
In order to study the colonization rule of Bacillus subtilis biocontrol strain SEM-9 in the rhizosphere of crops and its influence on the microbial diversity of rhizosphere soil.
The strain SEM-9 was labeled with green fluorescent protein by natural transformation method, and the colonization in rhizosphere soil, on root surface and in root tissue were observed by inverted fluorescence microscope. The changes of microbial diversity in rhizosphere soil treated with the strain SEM-9 were analyzed by high-throughput sequencing using soil with soilborne diseases as test material.
The recombinant strain SEM-9-pGFP22 stably expressing green fluorescent protein was constructed. The observations of fluorescence microscopy showed that SEM-9-pGFP22 could colonize on the rhizosphere soil and root surface, but not in root tissue or cell. After treated with the SEM-9 suspension, the incidence rate of cucumber soilborne disease significantly reduced, and the fungal diversity in rhizosphere soil increased.
The GFP labeling method of SEM-9 strain was successfully established, and the rhizosphere colonization rule of the strain and the control effect on cucumber soilborne diseases were clarified, which lays a foundation for the later development of alternative microbial fertilizer.
[1] |
LUGTENBERG B J J, DEKKERS L, BLOEMBERG G V. Molecular determinants of rhizosphere colonization by Pseudomonas[J]. Annual Review of Phytopathology, 2001, 39(0): 461-490. doi: 10.1146/annurev.phyto.39.1.461
|
[2] |
COMPANT S, CLÉMENT C, SESSITSCH A. Plant growth-promoting bacteria in the rhizo and endosphere of plants: Their role, colonization, mechanisms involved, and prospects for utilization[J]. Soil Biology and Biochemistry, 2010, 42(5): 669-678. doi: 10.1016/j.soilbio.2009.11.024
|
[3] |
GHIRARDI S, DESSAINT F, MAZURIER S, et al. Identification of traits shared by rhizosphere competent strains of fluorescent pseudomonads[J]. Microbial Ecology, 2012, 64(3): 725-737. doi: 10.1007/s00248-012-0065-3
|
[4] |
HALL-STOODLEY L, COSTERTON J W, STOODLEY P. Bacterial biofilms: From the natural environment to infectious diseases[J]. Nature Reviews Microbiology, 2004, 2(2): 95-108. doi: 10.1038/nrmicro821
|
[5] |
BAIS H P, FALL R, VIVANCO J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiology, 2004, 134(1): 307-319. doi: 10.1104/pp.103.028712
|
[6] |
CHEN Y, CAO S G, CHAI Y R, et al. A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants[J]. Molecular Microbiology, 2012, 85(3): 418-430. doi: 10.1111/j.1365-2958.2012.08109.x
|
[7] |
CHU F, KEARNS D B, BRANDA S S, et al. Targets of the master regulator of biofilm formation in Bacillus subtilis[J]. Molecular Microbiology, 2006, 59(4): 1216-1228. doi: 10.1111/j.1365-2958.2005.05019.x
|
[8] |
KEARNS D B, CHU F, BRANDA S S, et al. A master regulator for biofilm formation by Bacillus subtilis[J]. Molecular Microbiology, 2005, 55(3): 739-749.
|
[9] |
TASAKI S, NAKAYAMA M, SHOJI W. Morphologies of Bacillus subtilis communities responding to environmental variation[J]. Development, Growth & Differentiation, 2017, 59(5): 369-378. doi: 10.1111/dgd.12383
|
[10] |
HAMON M A, LAZAZZERA B A. The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis[J]. Molecular Microbiology, 2001, 42(5): 1199-1209.
|
[11] |
VLAMAKIS H, CHAI Y, BEAUREGARD P, et al. Sticking together: Building a biofilm the Bacillus subtilis way[J]. Nature Reviews Microbiology, 2013, 11(3): 157-168. doi: 10.1038/nrmicro2960
|
[12] |
LI Q R, LIAO S T, ZHI H Y, et al. Characterization and sequence analysis of potential biofertilizer and biocontrol agent Bacillus subtilis strain SEM-9 from silkworm excrement[J]. Canadian Journal of Microbiology, 2019, 65(1): 45-58. doi: 10.1139/cjm-2018-0350
|
[13] |
梁肇均, 林毓娥, 何晓明, 等. 黄瓜土传性病害的发生与防治技术[J]. 长江蔬菜, 2019(7): 52-54.
|
[14] |
COOMBS J T, FRANCO C M M. Visualization of an endophytic Streptomyces species in wheat seed[J]. Applied and Environmental Microbiology, 2003, 69(7): 4260-4262. doi: 10.1128/AEM.69.7.4260-4262.2003
|
[15] |
WEYENS N, BOULET J, ADRIAENSEN D, et al. Contrasting colonization and plant growth promoting capacity between wild type and a GFP-derative of the endophyte Pseudomona sputida W619 in hybrid poplar[J]. Plant and Soil, 2012, 356(1/2): 217-230. doi: 10.1007/s11104-011-0831-x
|
[16] |
WANG X J, LI M J, YAN Q, et al. Across genus plasmid transformation between Bacillus subtilis and Escherichia coli and the effect of Escherichia coli on the transforming ability of free plasmid DNA[J]. Current Microbiology, 2007, 54(6): 450-456. doi: 10.1007/s00284-006-0617-1
|
[17] |
李瑞芳, 薛雯雯, 黄亮, 等. 枯草芽孢杆菌感受态细胞的制备及质粒转化方法研究[J]. 生物技术通报, 2011(5): 227-230.
|
[18] |
ZBORALSKI A, FILION M. Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp.[J]. Computational and Structural Biotechnology Journal, 2020, 18: 3539-3554. doi: 10.1016/j.csbj.2020.11.025
|
[19] |
崔晓辰. 根际微生物与土壤植物关系的研究进展[J]. 现代农业研究, 2021, 27(5): 34-35. doi: 10.3969/j.issn.1674-0653.2021.05.015
|
[20] |
刘京伟, 李香真, 姚敏杰. 植物根际微生物群落构建的研究进展[J]. 微生物学报, 2021, 61(2): 231-248.
|
[21] |
刘王锁, 李海泉, 何毅, 等. 根际微生物对植物与土壤交互调控的研究进展[J]. 中国土壤与肥料, 2021(5): 318-327. doi: 10.11838/sfsc.1673-6257.20292
|
[22] |
郑婷婷. 生防菌GHt_q6对黄瓜根系土壤微生态及根结线虫的影响[D]. 晋中: 山西农业大学, 2019.
|