LI Qingrong, XING Dongxu, XIAO Yang, et al. Rhizosphere colonization of Bacillus subtilis biocontrol strain SEM-9 and the effect on microbial diversity in rhizosphere soil[J]. Journal of South China Agricultural University, 2022, 43(4): 82-88. DOI: 10.7671/j.issn.1001-411X.202107008
    Citation: LI Qingrong, XING Dongxu, XIAO Yang, et al. Rhizosphere colonization of Bacillus subtilis biocontrol strain SEM-9 and the effect on microbial diversity in rhizosphere soil[J]. Journal of South China Agricultural University, 2022, 43(4): 82-88. DOI: 10.7671/j.issn.1001-411X.202107008

    Rhizosphere colonization of Bacillus subtilis biocontrol strain SEM-9 and the effect on microbial diversity in rhizosphere soil

    More Information
    • Received Date: July 06, 2021
    • Available Online: May 17, 2023
    • Objective 

      In order to study the colonization rule of Bacillus subtilis biocontrol strain SEM-9 in the rhizosphere of crops and its influence on the microbial diversity of rhizosphere soil.

      Method 

      The strain SEM-9 was labeled with green fluorescent protein by natural transformation method, and the colonization in rhizosphere soil, on root surface and in root tissue were observed by inverted fluorescence microscope. The changes of microbial diversity in rhizosphere soil treated with the strain SEM-9 were analyzed by high-throughput sequencing using soil with soilborne diseases as test material.

      Result 

      The recombinant strain SEM-9-pGFP22 stably expressing green fluorescent protein was constructed. The observations of fluorescence microscopy showed that SEM-9-pGFP22 could colonize on the rhizosphere soil and root surface, but not in root tissue or cell. After treated with the SEM-9 suspension, the incidence rate of cucumber soilborne disease significantly reduced, and the fungal diversity in rhizosphere soil increased.

      Conclusion 

      The GFP labeling method of SEM-9 strain was successfully established, and the rhizosphere colonization rule of the strain and the control effect on cucumber soilborne diseases were clarified, which lays a foundation for the later development of alternative microbial fertilizer.

    • [1]
      LUGTENBERG B J J, DEKKERS L, BLOEMBERG G V. Molecular determinants of rhizosphere colonization by Pseudomonas[J]. Annual Review of Phytopathology, 2001, 39(0): 461-490. doi: 10.1146/annurev.phyto.39.1.461
      [2]
      COMPANT S, CLÉMENT C, SESSITSCH A. Plant growth-promoting bacteria in the rhizo and endosphere of plants: Their role, colonization, mechanisms involved, and prospects for utilization[J]. Soil Biology and Biochemistry, 2010, 42(5): 669-678. doi: 10.1016/j.soilbio.2009.11.024
      [3]
      GHIRARDI S, DESSAINT F, MAZURIER S, et al. Identification of traits shared by rhizosphere competent strains of fluorescent pseudomonads[J]. Microbial Ecology, 2012, 64(3): 725-737. doi: 10.1007/s00248-012-0065-3
      [4]
      HALL-STOODLEY L, COSTERTON J W, STOODLEY P. Bacterial biofilms: From the natural environment to infectious diseases[J]. Nature Reviews Microbiology, 2004, 2(2): 95-108. doi: 10.1038/nrmicro821
      [5]
      BAIS H P, FALL R, VIVANCO J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiology, 2004, 134(1): 307-319. doi: 10.1104/pp.103.028712
      [6]
      CHEN Y, CAO S G, CHAI Y R, et al. A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants[J]. Molecular Microbiology, 2012, 85(3): 418-430. doi: 10.1111/j.1365-2958.2012.08109.x
      [7]
      CHU F, KEARNS D B, BRANDA S S, et al. Targets of the master regulator of biofilm formation in Bacillus subtilis[J]. Molecular Microbiology, 2006, 59(4): 1216-1228. doi: 10.1111/j.1365-2958.2005.05019.x
      [8]
      KEARNS D B, CHU F, BRANDA S S, et al. A master regulator for biofilm formation by Bacillus subtilis[J]. Molecular Microbiology, 2005, 55(3): 739-749.
      [9]
      TASAKI S, NAKAYAMA M, SHOJI W. Morphologies of Bacillus subtilis communities responding to environmental variation[J]. Development, Growth & Differentiation, 2017, 59(5): 369-378. doi: 10.1111/dgd.12383
      [10]
      HAMON M A, LAZAZZERA B A. The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis[J]. Molecular Microbiology, 2001, 42(5): 1199-1209.
      [11]
      VLAMAKIS H, CHAI Y, BEAUREGARD P, et al. Sticking together: Building a biofilm the Bacillus subtilis way[J]. Nature Reviews Microbiology, 2013, 11(3): 157-168. doi: 10.1038/nrmicro2960
      [12]
      LI Q R, LIAO S T, ZHI H Y, et al. Characterization and sequence analysis of potential biofertilizer and biocontrol agent Bacillus subtilis strain SEM-9 from silkworm excrement[J]. Canadian Journal of Microbiology, 2019, 65(1): 45-58. doi: 10.1139/cjm-2018-0350
      [13]
      梁肇均, 林毓娥, 何晓明, 等. 黄瓜土传性病害的发生与防治技术[J]. 长江蔬菜, 2019(7): 52-54.
      [14]
      COOMBS J T, FRANCO C M M. Visualization of an endophytic Streptomyces species in wheat seed[J]. Applied and Environmental Microbiology, 2003, 69(7): 4260-4262. doi: 10.1128/AEM.69.7.4260-4262.2003
      [15]
      WEYENS N, BOULET J, ADRIAENSEN D, et al. Contrasting colonization and plant growth promoting capacity between wild type and a GFP-derative of the endophyte Pseudomona sputida W619 in hybrid poplar[J]. Plant and Soil, 2012, 356(1/2): 217-230. doi: 10.1007/s11104-011-0831-x
      [16]
      WANG X J, LI M J, YAN Q, et al. Across genus plasmid transformation between Bacillus subtilis and Escherichia coli and the effect of Escherichia coli on the transforming ability of free plasmid DNA[J]. Current Microbiology, 2007, 54(6): 450-456. doi: 10.1007/s00284-006-0617-1
      [17]
      李瑞芳, 薛雯雯, 黄亮, 等. 枯草芽孢杆菌感受态细胞的制备及质粒转化方法研究[J]. 生物技术通报, 2011(5): 227-230.
      [18]
      ZBORALSKI A, FILION M. Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp.[J]. Computational and Structural Biotechnology Journal, 2020, 18: 3539-3554. doi: 10.1016/j.csbj.2020.11.025
      [19]
      崔晓辰. 根际微生物与土壤植物关系的研究进展[J]. 现代农业研究, 2021, 27(5): 34-35. doi: 10.3969/j.issn.1674-0653.2021.05.015
      [20]
      刘京伟, 李香真, 姚敏杰. 植物根际微生物群落构建的研究进展[J]. 微生物学报, 2021, 61(2): 231-248.
      [21]
      刘王锁, 李海泉, 何毅, 等. 根际微生物对植物与土壤交互调控的研究进展[J]. 中国土壤与肥料, 2021(5): 318-327. doi: 10.11838/sfsc.1673-6257.20292
      [22]
      郑婷婷. 生防菌GHt_q6对黄瓜根系土壤微生态及根结线虫的影响[D]. 晋中: 山西农业大学, 2019.
    • Cited by

      Periodical cited type(30)

      1. 张捷,崔健,舒军,吴年隆,李梦晴,赵雄伟. 低磷胁迫下不同耐受型谷子的代谢组学差异. 植物营养与肥料学报. 2025(01): 144-155 .
      2. 王潇,王艺雄,季杭翔,施曼,王会来,宋新章,李全. 毛竹根际土壤磷组分对氮和生物炭添加的响应. 生态学杂志. 2025(04): 1135-1143 .
      3. 杜艺,周波,袁娜娜,姚佳妮,代金霞. 荒漠植物根际解磷细菌的筛选及抑菌和促生特性研究. 农业科学研究. 2024(01): 20-25 .
      4. 宋惠洁,吴艳,胡丹丹,胡志华,柳开楼,徐小林,张九兰. 不同磷肥用量下红壤区早稻季产量与田面水磷素动态变化. 中国土壤与肥料. 2024(02): 51-57 .
      5. 王敏,彭大榕,曾吉兴,王诗语,朱林星,郭世伟. 植物矿质营养与病害研究进展及展望. 植物营养与肥料学报. 2024(07): 1339-1353 .
      6. 李蒙,熊婷婷,朱思远,袁童瑶,张健,龚守富. 不同钾肥用量对甜瓜幼苗生长及基质特性的影响. 分子植物育种. 2024(18): 6120-6128 .
      7. 黄雨轩,游欣,张林平,吴斐,张扬,黄绍华. 根系分泌物提高土壤磷有效性研究概述. 林业科学研究. 2024(04): 193-203 .
      8. 安海涛,孙彩彩,董全民,杨晓霞,刘文亭,赵新全. 根系分泌物与植物—土壤间互作机制的研究进展. 青海畜牧兽医杂志. 2024(05): 50-59 .
      9. 薛迎斌,宋佳,李枭艺,李小豪,陈经烨,伍萍珍,朱胜男,刘颖. 大豆GmMADS4基因克隆、亚细胞定位及功能分析. 华南农业大学学报. 2023(03): 420-429 . 本站查看
      10. 孙志伟,徐月梅,许荣越,朱宽宇,杨建昌. 水稻低磷胁迫响应及其调控机制的研究进展. 核农学报. 2023(08): 1562-1570 .
      11. 刘瑀,陆超,焦点,刘宇馨,王国光. 低磷胁迫下翅碱蓬生长特性及脂肪酸含量的变化机制. 海洋科学. 2023(04): 117-125 .
      12. 吕铭滔,龚海光,黄永芳,龚勇军. 磷对铝胁迫油茶芽苗初生根保护酶的影响. 经济林研究. 2023(03): 271-277 .
      13. 陈浩婷,张玉静,刘洁,代泽敏,刘伟,石玉,张毅,李天来. 低磷胁迫下番茄转录因子WRKY6功能分析. 生物技术通报. 2023(10): 136-147 .
      14. 夏雪,蔡康锋,刘磊,宋秀娟,汪军妹,岳文浩. 大麦根形态和分子水平对低磷胁迫响应研究进展. 作物杂志. 2023(06): 11-16 .
      15. 田磊. 不同林龄泡桐根系分泌物对土壤酶活性和微生物的影响. 林业调查规划. 2022(01): 28-33 .
      16. 莫维维,韦建圩,梁嘉玲,刘易,谢伟东,任哲. 桂西北喀斯特地区漾濞泡核桃林地土壤与叶片养分化学计量特征. 经济林研究. 2022(01): 26-35 .
      17. 赵宽,万昕,邢德科,胡睿鑫,周葆华,袁可升. 低分子量有机酸对土壤有效磷及重金属释放影响的研究进展. 土壤通报. 2022(05): 1228-1236 .
      18. 蔡银美,赵庆霞,张成富. 低磷下植物根系分泌物对土壤磷转化的影响研究进展. 东北农业大学学报. 2021(02): 79-86 .
      19. 马庆华,贺淑霞,王伟南,曹晗,李贺. 磷供应水平对盆花月季‘仙境’生长和品质的影响. 北方园艺. 2021(11): 69-75 .
      20. 周梦岩,何冬梅,李亚超,刘静,马祥庆,李明. 紫色酸性磷酸酶在植物响应低磷胁迫中的作用研究进展. 分子植物育种. 2021(11): 3763-3770 .
      21. 惠乾龙,叶文彬,郭晋隆,袁照年,许莉萍. 植物磷匮乏下的根系、代谢和分子响应研究进展. 中国糖料. 2021(03): 34-42 .
      22. 靳琇,陈浩婷,石玉,白龙强,侯雷平,张毅. 柠檬酸浸种引发对低磷胁迫下番茄幼苗生长及生理特性的影响. 中国生态农业学报(中英文). 2021(07): 1159-1170 .
      23. 沈启维,李艳春,张健. 提高植物磷高效利用能力方法的研究进展. 绿色科技. 2021(11): 157-160 .
      24. 肖如武,黄楚龙,宗钊辉,王维,赵伟才,王军. 低磷胁迫对烤烟根系有机酸含量及土壤磷酸酶活性的影响. 广东农业科学. 2021(08): 74-82 .
      25. 忙顺兰,罗晓蔓,丁贵杰. 马尾松幼苗根系分泌物对土壤酶活性和养分的影响. 中南林业科技大学学报. 2021(12): 53-59 .
      26. 丁艳,邢媛,任蒙莲. 低磷水稻根表铁膜形成对养分吸收的影响. 安徽科技学院学报. 2021(05): 47-52 .
      27. 武海燕,李喜焕,李文龙,孔佑宾,杜汇,张彩英. 大豆耐低磷性状鉴定及优异种质筛选. 河南农业科学. 2020(01): 61-67 .
      28. 张弛,孟琳钦,苏丹,仝则乾,胡祖庆. 麦蚜及植物病毒胁迫下小麦体内保护酶和解毒酶活性的变化. 麦类作物学报. 2020(03): 328-333 .
      29. 赵雄伟,吴年隆,乔佳辉,李旭凯,韩渊怀,邢国芳. 谷子酸性磷酸酶ACP家族基因鉴定与SiACP1耐低磷单倍型分析. 华北农学报. 2020(04): 35-45 .
      30. 王宇蕴,汤利. 多样性种植体系提高酸性红壤磷有效性的研究进展. 磷肥与复肥. 2020(09): 47-49 .

      Other cited types(35)

    Catalog

      Article views (299) PDF downloads (517) Cited by(65)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return