Citation: | WAN Weican, ZHANG Xianyu, ZHAO Xin, et al. Effect of ETV5 knockout on gene expression profile in mouse muscle[J]. Journal of South China Agricultural University, 2022, 43(2): 26-33. DOI: 10.7671/j.issn.1001-411X.202106023 |
Compared with the wild type mice, the homozygous ETV5 knockout mice prepared by CRISPR/Cas9 technology showed significant weakness in body size and body weight along with endogenous spermatogonial stem cell ablation. The purpose of this study was to explore the effect of ETV5 knockout on the muscle expression profile of mice.
The muscle tissues of three wild-type male mice and three ETV5 homozygous knockout male mice aged six weeks were collected and total RNA was extracted for transcriptome sequencing. We analyzed the sequencing results using bioinformatic method. Cluster analysis, GO and KEGG enrichment analyses were performed on the differentially expressed genes in the muscle samples of two groups of mice.
A total of 574 differentially expressed genes were screened out from the muscle tissues of two groups, including 292 up-regulated genes and 282 down-regulated genes. Several genes were found to affect the growth and development of ETV5 knockout mice. These genes included Amd1 affecting muscle development of mice, and Chrna2 affecting fat accumulation. Most of the pathways enriched by GO and KEGG analyses were related to fat metabolism and growth and development.
These results provide an explanation for the molecular mechanism of abnormal development of ETV5 knockout mice, and provide references for further study of in vivo function of ETV5 gene.
[1] |
LATCHMAN D S. Transcription-factor mutations and disease[J]. The New England Journal of Medicine, 1996, 334(1): 28-33. doi: 10.1056/NEJM199601043340108
|
[2] |
SHARROCKS A D. The ETS-domain transcription factor family[J]. Nature Reviews Molecular Cell Biology, 2001, 2(11): 827-837. doi: 10.1038/35099076
|
[3] |
OH S, SHIN S, JANKNECHT R. ETV1, 4 and 5: An oncogenic subfamily of ETS transcription factors[J]. Biochimica et Biophysica Acta, 2012, 1826(1): 1-12.
|
[4] |
O'BRYAN M K, GREALY A, STAHL P J, et al. Genetic variants in the ETV5 gene in fertile and infertile men with nonobstructive azoospermia associated with Sertoli cell-only syndrome[J]. Fertility and Sterility, 2012, 98(4): 827-835. doi: 10.1016/j.fertnstert.2012.06.013
|
[5] |
EO J, HAN K, MURPHY M K, et al. Etv5, an ETS transcription factor, is expressed in granulosa and cumulus cells and serves as a transcriptional regulator of the cyclooxygenase-2[J]. The Journal of Endocrinology, 2008, 198(2): 281-290. doi: 10.1677/JOE-08-0142
|
[6] |
BRINSTER R L, AVARBOCK M R. Germline transmission of donor haplotype following spermatogonial transplantation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(24): 11303-11307. doi: 10.1073/pnas.91.24.11303
|
[7] |
CHEN C, OUYANG W, GRIGURA V, et al. ERM is required for transcriptional control of the spermatogonial stem cell niche[J]. Nature, 2005, 436(7053): 1030-1034. doi: 10.1038/nature03894
|
[8] |
EO J, SHIN H, KWON S, et al. Complex ovarian defects lead to infertility in Etv5-/- female mice[J]. Molecular Human Reproduction, 2011, 17(9): 568-576. doi: 10.1093/molehr/gar021
|
[9] |
SCHLESSER H N, SIMON L, HOFMANN M C, et al. Effects of ETV5 (ets variant gene 5) on testis and body growth, time course of spermatogonial stem cell loss, and fertility in mice[J]. Biology of Reproduction, 2008, 78(3): 483-489. doi: 10.1095/biolreprod.107.062935
|
[10] |
JAMSAI D, CLARK B J, SMITH S J, et al. A missense mutation in the transcription factor ETV5 leads to sterility, increased embryonic and perinatal death, postnatal growth restriction, renal asymmetry and polydactyly in the mouse[J]. PLoS One, 2013, 8(10): e77311. doi: 10.1371/journal.pone.0077311
|
[11] |
ZHANG X, ZHAO X, LI G, et al. Establishment of Etv5 gene knockout mice as a recipient model for spermatogonial stem cell transplantation[J]. Biology Open, 2021, 10(1). doi: 10.1242/bio.056804.
|
[12] |
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8
|
[13] |
KANEHISA M, GOTO S. KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 2000, 28(1): 27-30. doi: 10.1093/nar/28.1.27
|
[14] |
ARAKI S, SAIGA H, MAKABE K W, et al. Expression of AMD1, a gene for a MyoD1-related factor in the ascidian Halocynthia roretzi[J]. Roux’s Archives of Developmental Biology, 1994, 203(6): 320-327. doi: 10.1007/BF00457803
|
[15] |
JUN H, MA Y, CHEN Y, et al. Adrenergic-independent signaling via CHRNA2 regulates beige fat activation[J]. Developmental cell, 2020, 54(1): 106-116. doi: 10.1016/j.devcel.2020.05.017
|
[16] |
LUO J, XU Q, JIANG B, et al. Selectivity, cell permeability and oral availability studies of novel bromophenol derivative HPN as protein tyrosine phosphatase 1B inhibitor[J]. British Journal of Pharmacology, 2018, 175(1): 140-153. doi: 10.1111/bph.14080
|
[17] |
GRUNBERG J R, HOFFMANN J M, HEDJAZIFAR S, et al. Overexpressing the novel autocrine/endocrine adipokine WISP2 induces hyperplasia of the heart, white and brown adipose tissues and prevents insulin resistance[J]. Scientific Reports, 2017, 7: 43515. doi: 10.1038/srep43515
|
[18] |
CEREIJO R, GAVALDA-NAVARRO A, CAIRO M, et al. CXCL14, a brown adipokine that mediates brown-fat-to-macrophage communication in thermogenic adaptation[J]. Cell Metabolism, 2018, 28(5): 750-763. doi: 10.1016/j.cmet.2018.07.015
|
[19] |
SAKAKIBARA I, YANAGIHARA Y, HIMORI K, et al. Myofiber androgen receptor increases muscle strength mediated by a skeletal muscle splicing variant of Mylk4[J]. iScience, 2021, 24(4): 102303. doi: 10.1016/j.isci.2021.102303
|
[20] |
MASON R R, MOKHTAR R, MATZARIS M, et al. PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle[J]. Molecular Metabolism, 2014, 3(6): 652-663. doi: 10.1016/j.molmet.2014.06.002
|
[21] |
BJURSELL M, GERDIN A K, PLOJ K, et al. Melanin-concentrating hormone receptor 1 deficiency increases insulin sensitivity in obese leptin-deficient mice without affecting body weight[J]. Diabetes, 2006, 55(3): 725-733. doi: 10.2337/diabetes.55.03.06.db05-1302
|
[22] |
WANG Y, DING Y, LI J. CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells[J]. Methods in Molecular Biology, 2017, 1622: 293-305.
|
[23] |
GRABACKA M, PIERZCHALSKA M, DEAN M, et al. Regulation of ketone body metabolism and the role of PPARα[J]. International Journal of Molecular Sciences, 2016, 17(12): 2093.
|
[24] |
MAGADUM A, ENGEL F B. PPARβ/δ: Linking metabolism to regeneration[J]. International Journal of Molecular Sciences, 2018, 19(7): 2013.
|
[25] |
WANG S, DOUGHERTY E J, DANNER R L. PPARγ signaling and emerging opportunities for improved therapeutics[J]. Pharmacological Research, 2016, 111: 76-85. doi: 10.1016/j.phrs.2016.02.028
|
1. |
黄法伟,董晓威. 基于PLC的水田农业机械智能化研究综述. 农机使用与维修. 2025(02): 62-66 .
![]() | |
2. |
石林榕,赵武云,孙步功. 离散单元法技术在《离散单元法理论及其应用》课程中的探索. 黑河学院学报. 2024(01): 104-106+130 .
![]() | |
3. |
杨颖,杨宁,邹世彦,张秀明,王明丽. 自走乘坐式水田除草机设计与试验. 农机市场. 2024(09): 56-58 .
![]() | |
4. |
陈佶,刘伟华. 稻田机械除草技术装备研究与应用现状. 农业工程. 2024(11): 17-22 .
![]() | |
5. |
马永明. 水稻插秧机的复合作业探索. 农机使用与维修. 2023(02): 27-30 .
![]() | |
6. |
赵晋,黄赟,翁晓星,刘丹,戴津婧. 水稻田间除草装备现状与分析. 农业开发与装备. 2023(06): 33-35 .
![]() | |
7. |
刘婉茹,张国忠,周勇,徐红梅,吴擎,付建伟,黄成龙,张建. 智能化技术在水稻生产全程机械化中的应用研究与发展趋势. 华中农业大学学报. 2022(01): 105-122 .
![]() | |
8. |
周志强. 水田机械除草技术的研究现状与发展趋势. 南方农机. 2022(05): 16-18+28 .
![]() | |
9. |
陈学深,方根杜,熊悦淞,王宣霖,武涛. 基于稻田除草部件横向偏距视觉感知的对行控制系统设计与试验. 华南农业大学学报. 2022(05): 83-91 .
![]() | |
10. |
李敏华,董永义,郭园,庄得凤,杨恒山. 玉米田杂草综合防控措施探究. 内蒙古民族大学学报(自然科学版). 2021(01): 77-83 .
![]() | |
11. |
王奇,周文琪,唐汉,马骁驰,王金武,佟童. 弧齿往复式稻田株间自动避苗除草装置设计与试验. 农业机械学报. 2021(06): 53-61+72 .
![]() |